|
Abstract With the development of smart grids and new 5G infrastructure, the type and quantity of pylon devices are increasing, and power supply issues have received widespread attention. The battery power supply method for high-voltage pylon devices (PD) has a large operation and maintenance workload, requiring better reliability. Seeking a more reasonable power supply method has become an important issue. In recent years, power supply technology, by taking electricity through overhead transmission lines and wirelessly transmitting electricity to power tower equipment, can solve the power supply problem of PD. Therefore, this paper systematically analyzes the current development status of wireless power supply technology for power tower equipment from the aspects of wireless power supply systems for pylon devices (PD-WPSS), power intake devices, magnetic coupling mechanisms, compensation networks, energy converters, and control methods. The application prospects and urgent problems that need to be solved are pointed out, and transmission efficiency and development trends in anti-deviation, robustness, and productization are explored. PD-WPSS should meet the technical requirements: transmission distance in meters, transmission power in hundreds of watts, and good resistance to offset, mechanical strength, insulation level, and corrosion. The method can obtain power from the phase line magnetic field at a power level of one hundred watts. However, the large fluctuation phenomenon in the phase line current should be addressed. The main methods include energy storage, protection, and bypass power supply. The magnetic coupling structure of the system should be considered to increase the transmission distance without affecting the insulation performance of insulators. From the industrialization perspective, copper consumption and the feasibility of mass production should be considered. The compensation network of the system should not be limited to SS-type compensation networks or CCL compensation networks. It can combine with higher-order compensation networks to improve the transmission characteristics of the system. For the converter and its control methods, the conversion from power frequency to high frequency is mainly achieved on the transmitting side. On the receiving side, constant current/constant voltage output is achieved based on the demand characteristic curve of the load. The results show that the research on PD-WPSS has preliminarily achieved the expected power supply function. However, its power supply efficiency, power, and resistance to current fluctuations and offset still need to be improved. Currently, there is no relevant product standard. In addition, system lightweight design and multi-load power distribution optimization need to be further explored to improve the practicality of PD-WPSS. PD-WPSS still has a long way to go before it is productized and applied on a large scale.
|
Received: 04 August 2023
|
|
|
|
|
[1] 张超, 赵德安. 太阳能电池在电子电流互感器高压侧供能的研究[J]. 电力电子技术, 2009, 43(4): 42-43, 49. Zhang Chao, Zhao Dean.Research of OCT power system based on solar cell[J]. Power Electronics, 2009, 43(4): 42-43, 49. [2] 倪源, 谢施君, 贾程乾, 等. 电场耦合取能技术的仿真与试验研究[J]. 四川电力技术, 2021, 44(4): 1-5, 10. Ni Yuan, Xie Shijun, Jia Chengqian, et al.Simulation and experimental research on influencing factors of coupling power technology[J]. Sichuan Electric Power Technology, 2021, 44(4): 1-5, 10. [3] 李玉付. 基于电场感应的输电线路在线监测装置供电电源研究[D]. 北京: 华北电力大学, 2022. Li Yufu.Research on power supply for on-line monitoring device of transmission line based on electric field induction[D]. Beijing: North China Electric Power University, 2022. [4] 许永强. 基于电场感应的无线取能电源研究[D]. 济南: 山东大学, 2022. Xu Yongqiang.Research on wireless power supply based on electric field induction[D]. Jinan: Shandong University, 2022. [5] 吴蓉, 杨军, 李晓东, 等. 输电线路在线监测系统的电源解决方案[J]. 电源技术, 2012, 36(5): 709-710, 737. Wu Rong, Yang Jun, Li Xiaodong, et al.Power solutions of high-voltage on-line monitoring equipment[J]. Chinese Journal of Power Sources, 2012, 36(5): 709-710, 737. [6] 赵争鸣, 张艺明, 陈凯楠. 磁耦合谐振式无线电能传输技术新进展[J]. 中国电机工程学报, 2013, 33(3): 81. Zhao Zhengming, Zhang Yiming, Chen Kainan.New progress of magnetically-coupled resonant wireless power transfer technology[J]. Proceedings of the CSEE, 2013, 33(3): 81. [7] 张波, 疏许健, 吴理豪, 等. 无线电能传输技术亟待解决的问题及对策[J]. 电力系统自动化, 2019, 43(18): 1-12. Zhang Bo, Shu Xujian, Wu Lihao, et al.Problems of wireless power transmission technology urgent to be solved and corresponding countermeasures[J]. Auto- mation of Electric Power Systems, 2019, 43(18): 1-12. [8] Du Yuwei, Wang Heyang, Zhao Yufei, et al.Design of high-voltage power transmission insulators based on ultrasonic technology[J]. IEEE Transactions on Industrial Electronics, 2023, 70(10): 10740-10749. [9] 郑金鑫, 万志敏, 杜星文, 等. 超声波对金属材料性能影响实验研究[J]. 实验力学, 1998, 13(4): 492-496. Zheng Jinxin, Wan Zhimin, Du Xingwen, et al.The effect of ultrasonic waves on metal mechanical behavior[J]. Journal of Experimental Mechanics, 1998, 13(4): 492-496. [10] Hong Zhou, Hu Wenshan, Deng Qijun, et al.A high voltage wireless power transfer system[C]//2015 Chinese Automation Congress (CAC), Wuhan, 2016: 2257-2261. [11] Gao Xingran, Deng Qijun, Hu Wenshan, et al.Electromagnetic properties of a WPT system applied on transmission lines[C]//2016 Progress in Electro- magnetic Research Symposium (PIERS), Shanghai, China, 2016: 5160-5164. [12] 周洪, 蒋燕. 应用于智能电网在线监测设备供电的磁共振无线供能装置[J]. 中国电力, 2016, 49(5): 111-115. Zhou Hong, Jiang Yan.A power supply device based on wireless power transfer for the online monitoring equipment of power lines[J]. Electric Power, 2016, 49(5): 111-115. [13] Zhou Hong, Gao Xingran, Lai Jingang, et al.Natural frequency optimization of wireless power systems on power transmission lines[J]. IEEE Access, 2018, 6: 14038-14047. [14] 周洪, 方力, 朱傲, 等. 一种用于高压线路监测设置的无线供能系统: CN113394889A[P].2021-09-14. [15] Chen Junfeng, Hu Zhaoyang, Wang Shengming, et al.Investigation of wireless power transfer for smart grid on-line monitoring devices under HV condition[J]. Procedia Computer Science, 2016, 83: 1307-1312. [16] Jin Liyang, Song Kai, Zhu Chunbo, et al.A CCL topology based mid-range power transfer system for low voltage side equipments on power lines[C]//2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, China, 2017: 9-12. [17] 黄智慧, 邹积岩, 王永兴, 等. 基于中继线圈的WPT技术及其在高压设备中的应用研究[J]. 电工技术学报, 2015, 30(11): 45-52. Huang Zhihui, Zou Jiyan, Wang Yongxing, et al.Application research of wireless power transmission technology in high-voltage equipment based on relay coil[J]. Transactions of China Electrotechnical Society, 2015, 30(11): 45-52. [18] Zhang Cheng, Niang Tang, Zhong Wenxing, et al.A new energy harvesting and wireless power transfer system for smart grid[C]//2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, BC, Canada, 2016: 1-5. [19] Qu Jialong, He Liangxi, Tang Niang, et al.Wireless power transfer using domino-resonator for 110-kV power grid online monitoring equipment[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 11380-11390. [20] Zhou Jiali, Li Zilin, Lee C K, et al.A weather- independent and renewable power supply with wireless power transfer feature for powering online monitoring systems in smart grid[J]. IEEE Transa- ctions on Industrial Electronics, 2023, 70(6): 6414-6424. [21] Wang Wei, Huang Xueliang, Tan Linlin, et al.Optimization design of an inductive energy harvesting device for wireless power supply system overhead high-voltage power lines[J]. Energies, 2016, 9(4): 242. [22] Wang Wei, Huang Xueliang, Tan Linlin, et al.Hybrid wireless charging system for monitoring overhead 110kV high-voltage power line equipment based on magneto-electric conversion[J]. IET Generation, Transmission & Distribution, 2016, 10(5): 1199-1208. [23] 王维. 高压输电线路在线监测设备无线供能关键技术研究及系统优化设计[D]. 南京: 东南大学, 2017. Wang Wei.Optimization design and key technology research of wireless power transfer for online monitoring devices overhead high-voltage power transmission lines[D]. Nanjing: Southeast University, 2017. [24] 黄学良, 王维, 刘瀚, 等. 一种110kV高压无线供能系统感应取能装置设计方法: CN105024460B[P].2017-05-03. [25] 王维, 曾振炜, 王劼忞, 等. 输电杆塔无线供电系统非均匀多米诺单元性能分析与优化[J]. 电工技术学报, 2022, 37(17): 4315-4325. Wang Wei, Zeng Zhenwei, Wang Jiemin, et al.Performance analysis and optimization of non- uniform domino unit in wireless power supply system of transmission tower[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4315-4325. [26] 杨霖. 高压铁塔监测设备无线供电技术研究[J]. 电工材料, 2022(6): 52-55. Yang Lin.Research on wireless power supply technology of high voltage tower monitoring equipment[J]. Electrical Engineering Materials, 2022(6): 52-55. [27] 蒋勇亮. 一种应用于高压线路设备供电的无线电能传输系统: CN103219806A[P].2013-07-24. [28] 魏斌, 王松岑, 徐翀, 等. 一种高压输电线路用电设备无线供电系统: CN108258780A[P].2018-07-06. [29] 唐酿, 黄明欣, 黄辉, 等. 一种高压线路智能监测设备的无线供电装置及方法: CN113241838A[P].2021-08-10. [30] 徐妍, 王成亮, 李军, 等. 能量和信号同传机构及高压线路监测设备的无线供电系统: CN113472090A[P].2021-10-01. [31] Du Lin, Wang Caisheng, Li Xianzhi, et al.A novel power supply of online monitoring systems for power transmission lines[J]. IEEE Transactions on Industrial Electronics, 2010, 57(8): 2889-2895. [32] 熊兰, 何友忠, 宋道军, 等. 输变电线路在线监测设备供电电源的设计[J]. 高电压技术, 2010, 36(9): 2252-2257. Xiong Lan, He Youzhong, Song Daojun, et al.Design on power supply for the transmission line on-line monitoring equipment[J]. High Voltage Engineering, 2010, 36(9): 2252-2257. [33] 李维峰, 付兴伟, 白玉成, 等. 输电线路感应取电电源装置的研究与开发[J]. 武汉大学学报(工学版), 2011, 44(4): 516-520. Li Weifeng, Fu Xingwei, Bai Yucheng, et al.Development of power induction devices for transmission lines[J]. Engineering Journal of Wuhan University, 2011, 44(4): 516-520. [34] 白玉成, 吴功平, 肖华, 等. 输电线路感应取电装置参数匹配方法[J]. 电力系统自动化, 2010, 34(21): 75-80. Bai Yucheng, Wu Gongping, Xiao Hua, et al.A parameter matching method for power induction devices on power transmission lines[J]. Automation of Electric Power Systems, 2010, 34(21): 75-80. [35] 李先志, 杜林, 陈伟根, 等. 输电线路状态监测系统取能电源的设计新原理[J]. 电力系统自动化, 2008, 32(1): 76-80. Li Xianzhi, Du Lin, Chen Weigen, et al.A novel scheme of draw-out power supply utilized in transmission line state monitoring[J]. Automation of Electric Power Systems, 2008, 32(1): 76-80. [36] 龚贤夫, 周浩, 戴攀, 等. 一种输电线路大功率取能电源的设计[J]. 电力系统保护与控制, 2012, 40(3): 124-128, 134. Gong Xianfu, Zhou Hao, Dai Pan, et al.A design of high-power supply installed on transmission lines[J]. Power System Protection and Control, 2012, 40(3): 124-128, 134. [37] 李芙英, 朱小梅, 纪昆, 等. 一种应用于高电压侧测量系统中电源[J]. 高电压技术, 2002, 28(3): 46-47. Li Fuying, Zhu Xiaomei, Ji Kun, et al.The power supply of opticelectric current transducer[J]. High Voltage Engineering, 2002, 28(3): 46-47. [38] 王书瑶. 电网高压在线监测系统供能电源的设计[J]. 电源技术, 2012, 36(8): 1196-1198, 1220. Wang Shuyao.Design of power supply in high voltage side of grid’s on-line mornitoring system[J]. Chinese Journal of Power Sources, 2012, 36(8): 1196-1198, 1220. [39] Vasquez-Arnez R L, Masuda M, Jardini J A, et al. Tap-off power from a transmission line shield wires to feed small loads[C]//2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA), Sao Paulo, Brazil, 2011: 116-121. [40] Vasquez-Arnez R L, Masuda M, Jardini J A, et al. Tap-off power from the overhead shield wires of an HV transmission line[J]. IEEE Transactions on Power Delivery, 2012, 27(2): 986-992. [41] 谢彦斌. 高压架空输电线路在线取能方法研究[D]. 重庆: 重庆大学, 2017. Xie Yanbin.Study on on-line power-tapping method of HV overhead transmission line[D]. Chongqing: Chongqing University, 2017. [42] 李勇, 罗海军, 杨环宇, 等. 基于磁心与线圈参数优化的非侵入式磁场取能系统功率密度提升方法[J]. 电工技术学报, 2024, 39(2): 313-324. Li Yong, Luo Haijun, Yang Huanyu, et al.Power density improvement method of non-invasive magnetic field energy harvester system based on optimization of magnetic core and coil parameters[J]. Transactions of China Electrotechnical Society, 2024, 39(2): 313-324. [43] 刘丰, 高迎霞, 毕卫红. 电子式电流互感器高压侧供能方案的研究[J]. 高电压技术, 2007, 33(7): 72-75. Liu Feng, Gao Yingxia, Bi Weihong.Power supply of high voltage side of electronic current transformer[J]. High Voltage Engineering, 2007, 33(7): 72-75. [44] 王祎凡, 任春光, 张佰富, 等. 基于电压源型PWM整流电路的输电线路测量与感应取电一体化互感器实现方法[J]. 电工技术学报, 2023, 38(1): 15-25. Wang Yifan, Ren Chunguang, Zhang Baifu, et al.Implementation method of integrated transformer for transmission line measurement and inductive power taking based on voltage source PWM rectifier[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 15-25. [45] 张鹏, 樊绍胜, 刘铮, 等. 一种改进的输电线缆取电电源的研究[J]. 电气传动自动化, 2019, 41(1): 5-9. Zhang Peng, Fan Shaosheng, Liu Zheng, et al.An energy acquisition research for transmission lines based on impedance matching[J]. Electric Drive Automation, 2019, 41(1): 5-9. [46] 谢文燕, 陈为. 基于组合补偿网络的抗偏移恒流输出无线电能传输系统研究[J]. 电工技术学报, 2022, 37(6): 1495-1512. Xie Wenyan, Chen Wei.Research on anti-offset constant-current output wireless power transfer system based on combined compensation network[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1495-1512. [47] 陈永洪, 黎祎阳, 杨斌, 等. 基于多中继线圈结构的无线电能传输系统恒流/恒压输出方法[J]. 电力系统自动化, 2022, 46(20): 147-154. Chen Yonghong, Li Yiyang, Yang Bin, et al.Constant-current/constant-voltage output method for wireless power transfer system based on multi-relay coil structure[J]. Automation of Electric Power Systems, 2022, 46(20): 147-154. [48] 贾舒然, 段善旭, 陈昌松, 等. 实现效率优化的无线电能传输系统双侧多周期不对称电压激励方法[J]. 电工技术学报, 2023, 38(17): 4597-4609. Jia Shuran, Duan Shanxu, Chen Changsong, et al.Dual-side multi-Period asymmetrical voltage excitation control for wireless power transfer system for efficiency optimization[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4597-4609. [49] 国家市场监督管理总局, 国家标准化管理委员会. 标称电压高于1000V的架空线路绝缘子第1部分: 交流系统用瓷或玻璃绝缘子元件定义、试验方法和判定准则: GB/T 1001.1—2021[S]. 北京: 中国标准出版社, 2021. [50] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 架空绞线用硬铝线: GB/T 17048—2017[S]. 北京: 中国标准出版社, 2017. [51] 谭平安, 许文浩, 上官旭, 等. 无线电能传输系统中组合串绕六边形线圈的互感建模及参数优化[J]. 电工技术学报, 2023, 38(9): 2299-2309. Tan Pingan, Xu Wenhao, Shangguan Xu, et al.Mutual inductance modeling and parameter optimization of wireless power transfer system with combined series- wound hexagonal coils[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2299-2309. [52] 荣灿灿, 严俐慧, 路聪慧, 等. 基于超材料与超表面的无线电能传输技术研究现状与进展综述[J]. 电工技术学报, 2023, 38(20): 5369-5384. Rong Cancan, Yan Lihui, Lu Conghui, et al.Overview on research status and progress of wireless power transfer technology based on metamaterials and metasurfaces[J]. Transactions of China Electro- technical Society, 2023, 38(20): 5369-5384. [53] 孙淑彬, 张波, 李建国, 等. 多负载磁耦合无线电能传输系统的拓扑发展和分析[J]. 电工技术学报, 2022, 37(8): 1885-1903. Sun Shubin, Zhang Bo, Li Jianguo, et al.Analysis and development on topologies of multi-load magnetic- coupling wireless power transfer system[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(8): 1885-1903. |
|
|