[1] 房宇轩, 胡俊杰, 马文帅. 计及用户意愿的电动汽车聚合商主从博弈优化调度策略[J]. 电工技术学报, 2024, 39(16): 5091-5103.
Fang Yuxuan, Hu Junjie, Ma Wenshuai.Optimal dispatch strategy for electric vehicle aggregators based on Stackelberg game theory considering user intention[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 5091-5103.
[2] 兰威, 陈飞雄. 计及阻塞管理的虚拟电厂与配电网协同运行策略[J]. 电气技术, 2022, 23(6): 30-41.
Lan Wei, Chen Feixiong.Cooperative operation strategy of distribution network and virtual power plants considering congestion management[J]. Electrical Engineering, 2022, 23(6): 30-41.
[3] 胡俊杰, 陆家悦, 马文帅, 等. 面向电网调峰的电动汽车聚合商多层级实时控制策略[J/OL]. 电力系统自动化, 1-18[2024-10-23].
Hu Junjie, Lu Jiayue, Ma Wenshuai, et al.Multi-layered real-time control strategy for electric vehicle aggregators aimed at grid peak shaving[J/OL]. Automation of Electric Power Systems, 1-18[2024-10-23].
[4] 范培潇, 杨军, 温裕鑫, 等. 基于可进化模型预测控制的含电动汽车多微电网智能发电控制策略[J]. 电工技术学报, 2024, 39(3): 699-713.
Fan Peixiao, Yang Jun, Wen Yuxin, et al.A multi microgrid intelligent generation control strategy with electric vehicles based on evolutionary model predictive control[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 699-713.
[5] 范培潇, 杨军, 温裕鑫, 等. 考虑电动汽车与微电网参与的配电网双层协调控制策略[J]. 电力系统自动化, 2024, 48(19): 60-68.
Fan Peixiao, Yang Jun, Wen Yuxin, et al.Bi-layer coordinated control strategy of distribution network considering participation of electric vehicles and microgrid[J]. Automation of Electric Power Systems, 2024, 48(19): 60-68.
[6] 吴巨爱, 薛禹胜, 谢东亮, 等. 电动汽车参与电量市场与备用市场的联合风险调度[J]. 电工技术学报, 2023, 38(23): 6407-6418.
Wu Juai, Xue Yusheng, Xie Dongliang, et al.The joint risk dispatch of electric vehicle in day-ahead electricity energy market and reserve market[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6407-6418.
[7] 程瑜, 邰宇峰, 丁肇豪, 等. 基于网络流的共享电动汽车优化调度[J]. 电工技术学报, 2022, 37(增刊1): 145-152.
Cheng Yu, Tai Yufeng, Ding Zhaohao, et al.Optimal scheduling of sharing electric vehicles based on network flow[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 145-152.
[8] 贾龙, 胡泽春, 宋永华, 等. 储能和电动汽车充电站与配电网的联合规划研究[J]. 中国电机工程学报, 2017, 37(1): 73-84.
Jia Long, Hu Zechun, Song Yonghua, et al.Joint planning of distribution networks with distributed energy storage systems and electric vehicle charging stations[J]. Proceedings of the CSEE, 2017, 37(1): 73-84.
[9] Li Wengen, Cao Jiannong, Guan Jihong, et al.A general framework for unmet demand prediction in on-demand transport services[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 2820-2830.
[10] Tang Liyang, Zhao Yang, Cabrera J, et al.Forecasting short-term passenger flow: an empirical study on Shenzhen metro[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3613-3622.
[11] Diao Zulong, Zhang Dafang, Wang Xin, et al.A hybrid model for short-term traffic volume prediction in massive transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3): 935-946.
[12] Lin Lu, Li Jianxin, Chen Feng, et al.Road traffic speed prediction: a probabilistic model fusing multi-source data[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(7): 1310-1323.
[13] Duan Peibo, Mao Guoqiang, Liang Weifa, et al.A unified spatio-temporal model for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(9): 3212-3223.
[14] Shin J, Sunwoo M.Vehicle speed prediction using a Markov chain with speed constraints[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(9): 3201-3211.
[15] Guo Shengnan, Lin Youfang, Li Shijie, et al.Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3913-3926.
[16] Liu Jielun, Ong G P, Chen Xiqun.GraphSAGE-based traffic speed forecasting for segment network with sparse data[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 1755-1766.
[17] Qu Zhaowei, Li Haitao, Li Zhihui, et al.Short-term traffic flow forecasting method with M-B-LSTM hybrid network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 225-235.
[18] Wang Tiange, Zhang Zijun, Tsui K L.PFFN: periodic feature-folding deep neural network for traffic condition forecasting[J]. IEEE Internet of Things Journal, 2024, 11(2): 3108-3120.
[19] Guo Shengnan, Lin Youfang, Feng Ning, et al.Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929.
[20] Zhao Yiji, Lin Youfang, Wen Haomin, et al.Spatial-temporal position-aware graph convolution networks for traffic flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(8): 8650-8666.
[21] 刘洪, 张旭, 刘畅, 等. 考虑充电设施充裕性的电动私家车出行与充电需求时序交互分析[J]. 中国电机工程学报, 2018, 38(18): 5469-5478.
Liu Hong, Zhang Xu, Liu Chang, et al.Timing interactive analysis of electric private vehicle traveling and charging demand considering the sufficiency of charging facilities[J]. Proceedings of the CSEE, 2018, 38(18): 5469-5478.
[22] 刘洪, 阎峻, 葛少云, 等. 考虑多车交互影响的电动汽车与快充站动态响应[J]. 中国电机工程学报, 2020, 40(20): 6455-6468.
Liu Hong, Yan Jun, Ge Shaoyun, et al.Dynamic response of electric vehicle and fast charging stations considering multi-vehicle interaction[J]. Proceedings of the CSEE, 2020, 40(20): 6455-6468.
[23] Guo Qinglai, Xin Shujun, Sun Hongbin, et al.Rapid-charging navigation of electric vehicles based on real-time power systems and traffic data[J]. IEEE Transactions on Smart Grid, 2014, 5(4): 1969-1979.
[24] 邢强, 陈中, 冷钊莹, 等. 基于实时交通信息的电动汽车路径规划和充电导航策略[J]. 中国电机工程学报, 2020, 40(2): 534-550.
Xing Qiang, Chen Zhong, Leng Zhaoying, et al.Route planning and charging navigation strategy for electric vehicles based on real-time traffic information[J]. Proceedings of the CSEE, 2020, 40(2): 534-550.
[25] 吴佳龙, 蔡晔, 唐夏菲, 等. 基于Isard法的充电站服务范围划分与实时定价策略[J]. 电力建设, 2023, 44(10): 72-83.
Wu Jialong, Cai Ye, Tang Xiafei, et al.Isard method based charging station service range division and real-time pricing strategy[J]. Electric Power Construction, 2023, 44(10): 72-83.
[26] Ji Jiahao, Wang Jingyuan, Huang Chao, et al.Spatio-temporal self-supervised learning for traffic flow prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(4): 4356-4364.
[27] 沈祖英, 肖雷雷, 单丰武, 等. 环境温度对NCM动力电池系统充放电性能的实验研究[C] // 中国汽车工程学会(China Society of Automotive Engineers). 2020中国汽车工程学会年会论文集, 2020: 8.
Shen Zuying, Xiao Leilei, Shan Fengwu, et al.The experimental study on charge and discharge performance of NCM power battery system based on ambient temperature[C] //SAECCE2020-EV084. 2020: 8.
[28] 中华人民共和国住房和城乡建设部. 城市道路工程设计规范: CJJ 37—2012[S]. 北京: 中国建筑工业出版社, 2012.
[29] 宋媛媛. 基于行驶工况的纯电动汽车能耗建模及续驶里程估算研究[D]. 北京: 北京交通大学, 2014.
Song Yuanyuan.Research on energy consumption modeling and driving range estimation of pure electric vehicles based on driving conditions[D]. Beijing: Beijing Jiaotong University, 2014.
[30] 洛杉矶标准地图数据[EB].(2024-07-06)[2024-07-06]. https://www.openstreetmap.org/export#map=11/33.9898/-118.0488
[31] PeMS Data [EB].(2024-04-20)[2024-04-20]. https://pems.dot.ca.gov/
[32] Kumar S V, Vanajakshi L.Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J]. European Transport Research Review, 2015, 7(3): 21.
[33] Zhang Junbo, Zheng Yu, Qi Dekang.Deep spatio-temporal residual networks for citywide crowd flows prediction[C] //Proceedings of the AAAI Conference on Artificial Intelligence, 2017.
[34] Bai Lei, Yao Lina, Li Can, et al. Adaptive graph convolutional recurrent network for traffic forecasting[EB/OL].2020: 2007.02842.https://arxiv.org/abs/2007.02842v2
[35] Li Mengzhang, Zhu Zhanxing.Spatial-temporal fusion graph neural networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4189-4196.
[36] 美国电价,12月2023[EB].(2024-03-24)[2024-07-06]. https://zh.globalpetrolprices.com/USA/electricity_prices/
[37] 美国平均时薪(月薪)[EB].(2024-07-06)[2024-07-06]. https://zh.tradingeconomics.com/united-states/average-hourly-earnings
[38] 洛杉矶地区气象数据[EB].(2024-08-24)[2024-08-24]. https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:93134/detail
[39] 栾鑫, 邓卫, 程琳, 等. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
Luan Xin, Deng Wei, Cheng Lin, et al.Mixed Logit model for understanding travel mode choice behavior of megalopolitan residents[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(4): 1029-1036. |