|
|
Dynamic Hysteresis Modeling Method for Iron Core Based on Permeance-Capacitance Analogy and Analytic Preisach Model |
Chen Bin1,2, Wang Chuanyuan2, Liu Yang3, Yang Fuyao3, Huang Li1,2 |
1. Hubei Provincial Engineering Technology Research Center for Power Transmission Line Yichang 443002 China; 2. College of Electrical Engineering and New Energy China Three Gorges University Yichang 443002 China; 3. State Grid Smart Grid Research Institute Co. Ltd Beijing 102209 China |
|
|
Abstract With the introduction of a large number of nonlinear loads into the power system, transformers work more frequently at high frequencies, and ferromagnetic materials show strong frequency dependence under high-frequency conditions. Therefore, this paper establishes an electromagnetic loss model considering the eddy current effect and relaxation effect of ferromagnetic materials, which can simulate the voltage and current characteristics at both ends of the transformer and predict the core loss of the transformer. Firstly, the Lorentz function replaces the distribution function of the classical Preisach model. The ascending and descending branch expressions are derived with the input of the magnetic field strength Hand the output of the magnetic induction intensity B. The reversible component expression is introduced in the classical Preisach model to simulate the static hysteresis characteristics of ferromagnetic materials accurately. The characteristic parameters of the Preisach model are obtained according to static hysteresis loop data from experimental measurements and particle swarm optimization algorithm. Based on the permeance-capacitance analogy method and the analytical Preisach model, the static hysteresis permeance model of the core is established in the simulation software PLECS, which can adjust the permeance value in real-time according to the change of magnetic field strength H. According to the experimental data, the static hysteresis permeance model can simulate the static hysteresis loop of the core. Secondly, based on the traditional loss statistical theory and field separation theory, the loss of ferromagnetic materials is divided into hysteresis loss, eddy current loss, and residual loss. Constant magnetoresistive and controlled magnetomotive force sources are introduced to characterize the eddy current loss and residual loss of ferromagnetic materials. The traditional core dynamic hysteresis permeance model is established. Based on the electrical steel measurement system, the hysteresis loop and loss value of silicon steel core at different frequencies and magnetic densities aremeasured. Under high-frequency conditions, the internal magnetic flux of ferromagnetic materials is not uniformly distributed due to the skin effect. As a result, the average error of the traditional dynamic hysteresis permeance model is 14.04% compared with the experimental data. Finally, to consider the non-local, frequency, historical, and other dependent processes of eddy current loss of ferromagnetic materials, the R-L fractional derivative is used to modify the eddy current loss expression, and its parameters are extracted according to the experimental loss value and quantum genetic algorithm. The controlled magnetomotive force source characterizes the eddy current effect, and an improved core dynamic hysteresis permeability model is established. The average relative error of the improved model is 6.59%, which verifies that the improved model can shorten the error.
|
Received: 12 July 2023
|
|
|
|
|
[1] 杨庆, 崔浩楠, 揭青松, 等. 基于对偶性原理的配电变压器高频电磁暂态模型[J]. 高电压技术, 2022, 48(4): 1498-1509. Yang Qing, Cui Haonan, Jie Qingsong, et al.High frequency electromagnetic transient model of distribution transformer based on duality principle[J]. High Voltage Engineering, 2022, 48(4): 1498-1509. [2] 赵玉顺, 戴义贤, 庄加才, 等. 基于热固耦合的中频变压器绝缘材料性能参数优化配合方法[J]. 电工技术学报, 2023, 38(4): 1051-1063. Zhao Yushun, Dai Yixian, Zhuang Jiacai, et al.Optimization of insulation material performance parameters for medium frequency transformers based on thermosolid coupling[J]. Transactions of China Electrotechnical Society, 2023, 38(4): 1051-1063. [3] 王威望, 刘莹, 何杰峰, 等. 高压大容量电力电子变压器中高频变压器研究现状和发展趋势[J]. 高电压技术, 2020, 46(10): 3362-3373. Wang Weiwang, Liu Ying, He Jiefeng, et al.Research status and development of high frequency transformer used in high voltage and large capacity power electronic transformer[J]. High Voltage Engineering, 2020, 46(10): 3362-3373. [4] Luo Min, Dujic D, Allmeling J.Modeling frequency- dependent core loss of ferrite materials using permeance-capacitance analogy for system-level circuit simulations[J]. IEEE Transactions on Power Electronics, 2019, 34(4): 3658-3676. [5] 陈彬, 秦小彬, 万妮娜, 等. 基于R-L型分数阶导数与损耗统计理论的铁磁材料高频损耗计算方法[J]. 电工技术学报, 2022, 37(2): 299-310. Chen Bin, Qin Xiaobin, Wan Nina, et al.Calculation method of high-frequency loss of ferromagnetic materials based on R-L type fractional derivative and loss statistical theory[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 299-310. [6] de Leon F, Semlyen A. Time domain modeling of eddy current effects for transformer transients[J]. IEEE Transactions on Power Delivery, 1993, 8(1): 271-280. [7] Holmberg P, Bergqvist A, Engdahl G.Modelling eddy currents and hysteresis in a transformer laminate[J]. IEEE Transactions on Magnetics, 1997, 33(2): 1306-1309. [8] Zhu J G, Hui S Y R, Ramsden V S. A dynamic equivalent circuit model for solid magnetic cores for high switching frequency operations[J]. IEEE Transa- ctions on Power Electronics, 1995, 10(6): 791-795. [9] 邹密. 计及磁滞效应的变压器低频电磁暂态模型及其在铁磁谐振中的应用[D]. 重庆: 重庆大学, 2018. Zou Mi.Low-frequency transformer model con- sidering hysteresis behavior and its application in ferroresonance[D]. Chongqing: Chongqing University, 2018. [10] Hamill D C.Lumped equivalent circuits of magnetic components: the gyrator-capacitor approach[J]. IEEE Transactions on Power Electronics, 1993, 8(2): 97-103. [11] Hamill D C.Gyrator-capacitor modeling: a better way of understanding magnetic components[C]//Proceedings of 1994 IEEE Applied Power Electronics Conference and Exposition-ASPEC'94, Orlando, FL, USA, 1994: 326-332. [12] Luo Min, Dujic D, Allmeling J.Modelling hysteresis of soft core materials using permeance-capacitance analogy for transient circuit simulations[C]//2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), Warsaw, Poland, 2017: 1-10. [13] 刘任, 杜莹雪, 李琳, 等. 解析逆Preisach磁滞模型[J]. 电工技术学报, 2023, 38(10): 2567-2576. Liu Ren, Du Yingxue, Li Lin, et al.Analytical inverse Preisach hysteresis model[J]. Transactions of China Electrotechnical Society, 2023, 38(10): 2567-2576. [14] 李岱岩, 张艳丽, 荆盈, 等. 基于J-A模型的电工钢片磁致伸缩特性模拟与实验[J]. 电工技术学报, 2022, 37(20): 5081-5091. Li Daiyan, Zhang Yanli, Jing Ying, et al.Modeling of magnetostrictive characteristics in an electrical steel sheet based on the J-A model and its experimental verification[J]. Transactions of China Electro- technical Society, 2022, 37(20): 5081-5091. [15] 陈昊, 李琳, 刘洋. 基于Energetic模型的机械应力作用下电工钢片磁滞特性模拟[J]. 电工技术学报, 2023, 38(12): 3101-3111. Chen Hao, Li Lin, Liu Yang.Simulation of magnetic hysteresis characteristics of electrical steel sheet under mechanical stress based on Energetic model[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3101-3111. [16] Luo Min, Dujic D, Allmeling J.Permeance based modeling of magnetic hysteresis with inclusion of eddy current effect[C]//2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 2018: 1764-1771. [17] Ducharne B, Sebald G, Guyomar D, et al.Fractional model of magnetic field penetration into a toroidal soft ferromagnetic sample[J]. International Journal of Dynamics and Control, 2018, 6(1): 89-96. [18] Zhang B, Gupta B, Ducharne B, et al.Preisach’s model extended with dynamic fractional derivation contribution[J]. IEEE Transactions on Magnetics, 2018, 54(3): 6100204. [19] Jiles D C, Atherton D L.Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1986, 61(1/2): 48-60. [20] Liu Ren, Li Lin.Analytical prediction model of energy losses in soft magnetic materials over broadband frequency range[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 2009-2017. [21] 陈彬, 王斐然, 陈睿, 等. 基于R-L型分数阶导数的动态解析逆Preisach模型[J]. 高电压技术, 2023, 49(9): 3918-3926. Chen Bin, Wang Feiran, Chen Rui, et al.Dynamic analytical inverse Preisach model based on R-L fractional derivative[J]. High Voltage Engineering, 2023, 49(9): 3918-3926. [22] 陈彬, 秦小彬, 唐波, 等. 基于R-L分数阶导数的动态J-A磁滞模型及其特征参数辨识算法[J]. 中国电机工程学报, 2022, 42(12): 4590-4603. Chen Bin, Qin Xiaobin, Tang Bo, et al.Dynamic J-A hysteresis model based on R-L fractional derivative and its characteristic parameter identification algorithm[J]. Proceedings of the CSEE, 2022, 42(12): 4590-4603. [23] 陈彬, 王斐然, 万妮娜, 等. 考虑可逆分量的解析Preisach磁滞模型及其特征参数辨识算法[J]. 高电压技术, 2023, 49(11): 4766-4774. Chen Bin, Wang Feiran, Wan Nina, et al.Analytical Preisach hysteresis model considering reversible component and its characteristic parameter identi- fication algorithm[J]. High Voltage Engineering, 2023, 49(11): 4766-4774. [24] 刘任, 李琳. 基于损耗统计理论与J-A磁滞模型的直流偏磁下磁性材料损耗计算方法[J]. 高电压技术, 2019, 45(12): 4062-4069. Liu Ren, Li Lin.Loss prediction of magnetic material under DC bias based on the statistical theory of losses and Jiles-Atherton hysteresis model[J]. High Voltage Engineering, 2019, 45(12): 4062-4069. [25] 陈文, 孙洪广, 李西成, 等. 力学与工程问题的分数阶导数建模[M]. 北京: 科学出版社, 2010. |
|
|
|