|
|
Review on Wayside Energy Storage Technology for Urban Rail Transit |
Jin Yong1, Huang Xianjin1, Shi Chunmin2, Zhong Zhihong1, Lin Fei1, Yang Zhongping1 |
1. School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China; 2. Standards and Metrology Institute China Academy of Railway Sciences Group Co. Ltd Beijing 100081 China |
|
|
Abstract The increasing demand for urban rail transit and its network size aggravates traction energy consumption and regenerative braking energy utilization. Train running chart optimization, inverter feedback, and energy storage are often used to minimize the use of braking resistors. At present, energy storage technology is widely used with different energy storage media and energy storage converters. The system can work in different states according to the train’s operating conditions and energy management strategies. The widely-used energy storage media include batteries, supercapacitors, and flywheels. Batteries have advantages in energy density for long-time energy storage, but the power density is relatively limited. Supercapacitors have power density advantages for high-power charging and discharging in a short period. In addition, supercapacitor plays the power supply function in urban rail transit to realize the regenerative braking energy absorption. Flywheels complete the conversion between electrical energy and mechanical energy through physical means, which have high power density. However, their costs are high. This paper compares the characteristics of the three energy storage media in terms of energy density, power density, and cost. According to the actual operation of urban rail, the energy storage converter needs to have bidirectional energy mobility. The bidirectional AC-DC converter and bidirectional DC-DC converter are the candidates. The basic topology of AC-DC converters is the two-level topology, but the power device cost and switching loss are high. This problem can be solved by applying multi-level technology. This paper takes three-level technology as an example. The three-level topologies for urban rail energy storage systems include diode neutral point clamped topology and active neutral point clamped topology. The basic current urban rail topology of DC-DC converters is the diode center-clamped topology based on the half-bridge structure. The module series-parallel and cascade technology is considered to meet high-voltage and high-power requirements. Due to the complexity of energy interaction among the traction power supply system, energy storage system, and train, formulating a reasonable energy management strategy is crucial to realize efficient charge/discharge control. Energy management strategies generally include threshold-based and power allocation-based strategies. The traditional threshold-based strategy is based on the fixed threshold, which is easy to realize. However, the coupling characteristics and coordinated control of the urban rail train and the whole traction power system need to be considered. Thus, strategies based on multiple fixed thresholds and dynamic threshold regulation are proposed. The power allocation strategy is mainly applied to the hybrid energy storage system to meet the energy and power allocation of different energy storage media. The energy storage system design re-optimization is put forward for energy storage medium selection and converter performance improvement, and the energy management re-optimization is proposed for “source, network, storage, vehicle” management and energy management system upgrades. It provides theoretical and methodological practice for the urban rail energy storage system.
|
Received: 16 October 2023
|
|
|
|
|
[1] 侯秀芳, 冯晨, 左超, 等. 2022年中国内地城市轨道交通线路概况[J]. 都市快轨交通, 2023, 36(1): 9-13. Hou Xiufang, Feng Chen, Zuo Chao, et al.Statistical analysis of urban rail transit in Chinese mainland in 2022[J]. Urban Rapid Rail Transit, 2023, 36(1): 9-13. [2] 中国城市轨道交通协会. 城市轨道交通2022年度统计和分析报告[J]. 城市轨道交通, 2023, 86(4): 13-15. China Urban Rail Transit Association. Annual statistics and analysis report of urban rail transit in 2022[J]. China Metros, 2023, 86(4): 13-15. [3] 包叙定. 我国城轨交通发展的现状、问题与瞻望[J]. 城市轨道交通, 2018(10): 16-21. Bao Xuding.Present situation, problems and prospect of urban rail transit development in China[J]. China Metros, 2018(10): 16-21. [4] 李晶, 荀径, 尹晓宏, 等. 北京市轨道交通列车运行节能控制方案研究与应用[J]. 铁道运输与经济, 2022, 44(6): 136-141. Li Jing, Xun Jing, Yin Xiaohong, et al.Research and application of energy conservation program for train operation control of Beijing rail transit[J]. Railway Transport and Economy, 2022, 44(6): 136-141. [5] 田琳. 中国城市轨道交通绿色城轨发展行动方案“六大行动”解读之二: 节能降碳增效行动[J]. 城市轨道交通, 2022(12): 22-25. Tian Ling.The second interpretation of the “six actions” of the action plan for the development of green urban railways in Chinese cities: energy saving, carbon reduction and efficiency actions[J]. China Metros, 2022(12): 22-25. [6] 郑亚晶, 李耀辉, 李雨恒, 等. 再生制动条件下地铁列车运行图的节能优化[J]. 华南理工大学学报(自然科学版), 2021, 49(7): 1-7. Zheng Yajing, Li Yaohui, Li Yuheng, et al.Energy saving optimization of metro train working diagram under regenerative braking[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(7): 1-7. [7] Zhang Gang, Tian Zhongbei, Tricoli P, et al.Inverter operating characteristics optimization for DC traction power supply systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3400-3410. [8] 张钢, 刘志刚, 牟富强. 双向变流器在城轨牵引供电系统中的应用[J]. 都市快轨交通, 2014, 27(4): 109-112. Zhang Gang, Liu Zhigang, Mou Fuqiang.Application of bi-directional converter in urban railway traction power supply system[J]. Urban Rapid Rail Transit, 2014, 27(4): 109-112. [9] Lin Sheng, Huang Di, Wang Aimin, et al.Research on the regeneration braking energy feedback system of urban rail transit[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7329-7339. [10] 杨中平, 林飞. 储能技术在地面式再生制动能量吸收和利用装置中的应用[J]. 都市快轨交通, 2021, 34(6): 1-8. Yang Zhongping, Lin Fei.Application of energy storage technology in stationary regenerative braking energy absorption and utilization devices[J]. Urban Rapid Rail Transit, 2021, 34(6): 1-8. [11] 周要培, 魏兴, 王斌, 等. 地铁列车模块化再生制动储能变流器的研发[J]. 电力电子技术, 2019, 53(6): 5-8. Zhou Yaopei, Wei Xing, Wang Bin, et al.Design of metro-train regenerative braking energy storage converter[J]. Power Electronics, 2019, 53(6): 5-8. [12] Iannuzzi D, Pagano E, Tricoli P.The use of energy storage systems for supporting the voltage needs of urban and suburban railway contact lines[J]. Energies, 2013, 6(4): 1802-1820. [13] Maoka A, Ikarashi H, Kurino F.Demonstration testing and evaluation of a train running under its own power using a stationary energy storage system[J]. Hitachi Review, 2014, 63(10): 678-684. [14] Wang Xiaowen, Sun Pengfei, Wang Qingyuan, et al.Joint optimization combining the capacity of subway on-board energy storage device and timetable[J]. IET Intelligent Transport Systems, 2023, 17(1): 193-210. [15] 胡婧娴, 林仕立, 宋文吉, 等. 城市轨道交通储能系统及其应用进展[J]. 储能科学与技术, 2014, 3(2): 106-116. Hu Jingxian, Lin Shili, Song Wenji, et al.Energy storage for urban rail transportation[J]. Energy Storage Science and Technology, 2014, 3(2): 106-116. [16] 蒋凯, 李浩秒, 李威, 等. 几类面向电网的储能电池介绍[J]. 电力系统自动化, 2013, 37(1): 47-53. Jiang Kai, Li Haomiao, Li Wei, et al.On several battery technologies for power grids[J]. Automation of Electric Power Systems, 2013, 37(1): 47-53. [17] 刘思佳. 轨道交通用钛酸锂电池建模与状态估计研究[D]. 北京: 北京交通大学, 2018. Liu Sijia.Research on modeling and state estimation of lithium titanate battery for rail transit[D]. Beijing: Beijing Jiaotong University, 2018. [18] Costa C M, Barbosa J C, Gonçalves R, et al.Recycling and environmental issues of lithium-ion batteries: advances, challenges and opportunities[J]. Energy Storage Materials, 2021, 37: 433-465. [19] 吴健, 张言茹, 郑鑫杰. 钛酸锂电池在城市轨道交通的适用性研究[J]. 都市快轨交通, 2021, 34(6): 39-46. Wu Jian, Zhang Yanru, Zheng Xinjie.Study on the applicability of lithium titanate battery in urban rail transit[J]. Urban Rapid Rail Transit, 2021, 34(6): 39-46. [20] 罗嘉明, 韦晓广, 高仕斌, 等. 高速铁路储能系统容量配置与能量管理技术综述与展望[J]. 中国电机工程学报, 2022, 42(19): 7028-7050. Luo Jiaming, Wei Xiaoguang, Gao Shibin, et al.Summary and outlook of capacity configuration and energy management technology of high-speed railway energy storage system[J]. Proceedings of the CSEE, 2022, 42(19): 7028-7050. [21] 肖俊. 钛酸锂电池在地铁车辆中的应用研究[J]. 电力机车与城轨车辆, 2020, 43(3): 44-48, 51. Xiao Jun.Application of lithium titanate battery in metro vehicle[J]. Electric Locomotives & Mass Transit Vehicles, 2020, 43(3): 44-48, 51. [22] 邓谊柏, 黄家尧, 陈挺, 等. 城市轨道交通超级电容技术[J]. 都市快轨交通, 2021, 34(6): 24-31. Deng Yibo, Huang Jiayao, Chen Ting, et al.Supercapacitor technology for urban rail transit systems[J]. Urban Rapid Rail Transit, 2021, 34(6): 24-31. [23] 陈静. 基于超级电容的地面式地铁再生制动能量回收技术研究[D]. 成都: 西南交通大学, 2015. Chen Jing.Research on regenerative braking energy recovery technology of ground subway based on supercapacitor[D]. Chengdu: Southwest Jiaotong University, 2015. [24] 陈怀鑫, 杨中平, 林飞, 等. 应用于城轨交通供电系统的超级电容储能装置稳定性研究[J]. 铁道学报, 2016, 38(3): 59-65. Chen Huaixin, Yang Zhongping, Lin Fei, et al.Stability research of stationary super-capacitor energy storage system applied in urban rail power supply system[J]. Journal of the China Railway Society, 2016, 38(3): 59-65. [25] 乔志军, 阮殿波. 超级电容在城市轨道交通车辆中的应用进展[J]. 铁道机车车辆, 2019, 39(2): 83-86, 90. Qiao Zhijun, Ruan Dianbo.Application of super- capacitors in urban rail transit vehicles[J]. Railway Locomotive & Car, 2019, 39(2): 83-86, 90. [26] 乔亮波, 张晓虎, 孙现众, 等. 电池-超级电容器混合储能系统研究进展[J]. 储能科学与技术, 2022, 11(1): 98-106. Qiao Liangbo, Zhang Xiaohu, Sun Xianzhong, et al.Advances in battery-supercapacitor hybrid energy storage system[J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. [27] 张俊杰. 地铁车载超级电容储能系统能量管理控制策略研究[D]. 株洲: 湖南工业大学, 2019. Zhang Junjie.Research on energy management control strategy of metro on-board supercapacitor energy storage system[D]. Zhuzhou: Hunan University of Technology, 2019. [28] 王大杰, 孙振海, 陈鹰, 等. 1 MW阵列式飞轮储能系统在城市轨道交通中的应用[J]. 储能科学与技术, 2018, 7(5): 841-846. Wang Dajie, Sun Zhenhai, Chen Ying, et al.Application of array 1 MW flywheel energy storage system in rail transit[J]. Energy Storage Science and Technology, 2018, 7(5): 841-846. [29] Meishner F, Sauer D U.Wayside energy recovery systems in DC urban railway grids[J]. eTransportation, 2019, 1: 100001. [30] Ratniyomchai T, Hillmansen S, Tricoli P.Recent developments and applications of energy storage devices in electrified railways[J]. IET Electrical Systems in Transportation, 2014, 4(1): 9-20. [31] 上官玉金, 谢长君, 刘芙蓉, 等. 锂电池与超级电容混合储能系统拓扑结构优化[J]. 电源技术, 2022, 46(1): 78-81. Shangguan Yujin, Xie Changjun, Liu Furong, et al.Topology optimization of lithium battery/super capacitor hybrid energy storage system[J]. Chinese Journal of Power Sources, 2022, 46(1): 78-81. [32] Yang Bo, Wang Jingbo, Zhang Xiaoshun, et al.Applications of battery/supercapacitor hybrid energy storage systems for electric vehicles using perturbation observer based robust control[J]. Journal of Power Sources, 2020, 448: 227444. [33] 陈维荣, 卜庆元, 刘志祥, 等. 燃料电池混合动力有轨电车动力系统设计[J]. 西南交通大学学报, 2016, 51(3): 430-436. Chen Weirong, Bu Qingyuan, Liu Zhixiang, et al.Power system design for a fuel cell hybrid power tram[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 430-436. [34] 秦强强, 张骄, 李宇杰, 等. 基于列车运行状态的城轨地面混合储能装置分时段控制策略[J]. 电工技术学报, 2019, 34(增刊2): 760-769. Qin Qiangqiang, Zhang Jiao, Li Yujie, et al.Time-of-day control strategy of urban rail ground hybrid energy storage device based on train operation status[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 760-769. [35] 刘宇嫣, 杨中平, 林飞, 等. 城轨地面式混合储能系统自适应能量管理与容量优化配置研究[J]. 电工技术学报, 2021, 36(23): 4874-4884. Liu Yuyan, Yang Zhongping, Lin Fei, et al.Study on adaptive energy management and optimal capacity configuration of urban rail ground hybrid energy storage system[J]. Transactions of China Electro- technical Society, 2021, 36(23): 4874-4884. [36] 杨浩丰, 刘冲, 李彬, 等. 基于列车运行工况的城轨地面式混合储能系统控制策略研究[J]. 电工技术学报, 2021, 36(增刊1): 168-178. Yang Haofeng, Liu Chong, Li Bin, et al.Research on the control strategy of urban rail ground-based hybrid energy storage system based on train operating conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 168-178. [37] 曲晓琛. 飞轮储能系统在轨道交通中的应用研究[D]. 济南: 山东大学, 2022. Qu Xiaochen.Research on application of flywheel energy storage system in rail transit[D]. Jinan: Shandong University, 2022. [38] 崔强. 城轨交通再生制动用飞轮储能电机控制研究[D]. 镇江: 江苏大学, 2020. Cui Qiang.Study on control of flywheel energy storage motor for regenerative braking of urban rail transit[D]. Zhenjiang: Jiangsu University, 2020. [39] 穆峰, 刘宜鑫, 李鑫, 等. IGBT并联应用均流控制技术综述[J]. 电源学报, 2024, 22(1): 119-132. Mu Feng, Liu Yixin, Li Xin, et al.Review of current balancing control for parallel-operating IGBTs[J]. Journal of Power Supply, 2024, 22(1): 119-132. [40] 盛况, 任娜, 徐弘毅. 碳化硅功率器件技术综述与展望[J]. 中国电机工程学报, 2020, 40(6): 1741-1752. Sheng Kuang, Ren Na, Xu Hongyi.A recent review on silicon carbide power devices technologies[J]. Proceedings of the CSEE, 2020, 40(6): 1741-1752. [41] Nabae A, Takahashi I, Akagi H. A new neutral- point-clamped PWM inverter[J]. IEEE Transactions on Industry Applications, 1981, IA-17(5): 518-523. [42] Barbosa P, Steimer P, Steinke J, et al.Active- neutral-point-clamped (ANPC) multilevel converter technology[C]//2005 European Conference on Power Electronics and Applications, Dresden, Germany, 2005: 10. [43] Bruckner T, Bemet S.Loss balancing in three-level voltage source inverters applying active NPC switches[C]//2001 IEEE 32nd Annual Power Elec- tronics Specialists Conference, Vancouver, BC, Canada, 2001: 1135-1140. [44] 樊启高, 吕华阳, 毕恺韬, 等. 面向直流储能系统的飞跨电容三电平双向升降压变换器及其模型预测控制策略[J]. 电工技术学报, 2022, 37(16): 4169-4179. Fan Qigao, Lü Huayang, Bi Kaitao, et al.Flying capacitor three-level bi-directional buck-boost converter and its model predictive control strategy for DC energy storage system[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4169-4179. [45] 胡斌, 杨中平, 黄先进, 等. 用于超级电容储能系统的三电平双向直流变换器及其控制[J]. 电工技术学报, 2015, 30(8): 83-89. Hu Bin, Yang Zhongping, Huang Xianjin, et al.Three-level bi-directional DC-DC converter and its control strategy used for super-capacitor energy storage system[J]. Transactions of China Electro- technical Society, 2015, 30(8): 83-89. [46] Yang Zhongping, Yang Zhihong, Xia Huan, et al.Supercapacitor state based control and optimization for multiple energy storage devices considering current balance in urban rail transit[J]. Energies, 2017, 10(4): 520. [47] Kong Deshi, Miyatake M.Energy management of superconducting magnetic energy storage applied to urban rail transit for regenerative energy recovery[C]// 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan, 2020: 2073-2077. [48] 鄢仁武, 姜雪儿. 变调节因子的不同容量锂电池储能系统能量控制策略[J]. 电气技术, 2024, 25(2): 21-30. Yan Renwu, Jiang Xueer.Energy control strategies for lithium battery energy storage systems with different capacities based on variable regulating factors[J]. Electrical Engineering, 2024, 25(2): 21-30. [49] 李进, 张钢, 刘志刚, 等. 城轨交通用飞轮储能阵列控制策略[J]. 电工技术学报, 2021, 36(23): 4885-4895. Li Jin, Zhang Gang, Liu Zhigang, et al.Control strategy of flywheel energy storage array for urban rail transit[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 4885-4895. [50] 马丽洁, 廖文江, 高宗余. 城轨列车车载超级电容储能控制策略研究[J]. 电工技术学报, 2015, 30(增刊1): 63-68. Ma Lijie, Liao Wenjiang, Gao Zongyu.Research on the control strategy of on-board supercapacitor energy storage for urban rail transit[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 63-68. [51] Petrović D J, Lazić M M, Jovanović Lazić B V, et al. Hybrid power supply system with fuzzy logic controller: power control algorithm, main properties, and applications[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10(4): 923-931. [52] Grbovic P J, Delarue P, Le Moigne P, et al.Modeling and control of the ultracapacitor-based regenerative controlled electric drives[J]. IEEE Transactions on Industrial Electronics, 2011, 58(8): 3471-3484. [53] Ciccarelli F, Del Pizzo A, Iannuzzi D.Improvement of energy efficiency in light railway vehicles based on power management control of wayside lithium-ion capacitor storage[J]. IEEE Transactions on Power Electronics, 2014, 29(1): 275-286. [54] 游志昆, 周群, 王为. 地铁车辆再生制动飞轮储能回收装置研究[J]. 机车电传动, 2019(6): 106-109, 114. You Zhikun, Zhou Qun, Wang Wei.Research on flywheel energy storage device of regenerative brake for metro vehicles[J]. Electric Drive for Locomotives, 2019(6): 106-109, 114. [55] 李进. 城轨交通地面飞轮储能系统控制策略研究[D]. 北京: 北京交通大学, 2021. Li Jin.Research on control strategy of ground flywheel energy storage system for urban rail transit[D]. Beijing: Beijing Jiaotong University, 2021. [56] Kume Y, Yokoyama K, Sata T, et al.Lithium ion battery application for regenerative energy utilization in traction power supply system[C]//IECON 2017- 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 2017: 3884-3888. [57] Ciccarelli F, Iannuzzi D.A novel energy management control of wayside Li-ion capacitors-based energy storage for urban mass transit systems[C]//Inter- national Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, Sorrento, Italy, 2012: 773-779. [58] Hayashiya H, Abe S, Iino Y, et al.Proposal of a novel control method of Li-ion battery system for regenerative energy utilization in traction power supply system[C]//2016 IEEE International Power Electronics and Motion Control Conference (PEMC), Varna, Bulgaria, 2016: 298-303. [59] Liu Yuyan, Yang Zhongping, Wu Xiaobo, et al.Adaptive threshold adjustment strategy based on fuzzy logic control for ground energy storage system in urban rail transit[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 9945-9956. [60] Yang Zhihong, Yang Zhongping, Xia Huan, et al.Brake voltage following control of supercapacitor- based energy storage systems in metro considering train operation state[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6751-6761. [61] 林仕立, 宋文吉, 冯自平, 等. 地铁混合储能系统及其功率动态分配控制方法[J]. 仪器仪表学报, 2016, 37(12): 2829-2835. Lin Shili, Song Wenji, Feng Ziping, et al.Hybrid energy storage system of Metro and its control method on power dynamic allocation[J]. Chinese Journal of Scientific Instrument, 2016, 37(12): 2829-2835. [62] 王玙, 杨中平, 林飞, 等. 有轨电车车载混合储能系统动态比例分配策略[J]. 电工技术学报, 2019, 34(增刊1): 405-413. Wang Yu, Yang Zhongping, Lin Fei, et al.Dynamic proportional allocation strategy of tram vehicle hybrid energy storage system[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 405-413. [63] 安星锟. 基于伪谱法的有轨电车混合储能系统能量管理策略的研究[D]. 北京: 北京交通大学, 2020. An Xingkun.Research on energy management strategy of tram hybrid energy storage system based on pseudospectral method[D]. Beijing: Beijing Jiaotong University, 2020. [64] 陈亚爱, 林演康, 王赛, 等. 基于滤波分配法的混合储能优化控制策略[J]. 电工技术学报, 2020, 35(19): 4009-4018. Chen Yaai, Lin Yankang, Wang Sai, et al.Optimal control strategy of hybrid energy storage based on filter allocation method[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4009-4018. |
|
|
|