|
|
Transient Energy Transfer and Oscillation Characteristics Analysis of Doubly-Fed Wind Turbine under Nonlinear Elastic Coupling |
Zhang Xiangyu, Huang Yongxuan, Fu Yuan |
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Baoding 071003 China |
|
|
Abstract After large-scale integration of renewable energy such as wind power and photovoltaics into the power grid, the dynamic stability of the system is affected, resulting in different types of power oscillations. The doubly-fed wind turbine is electrically decoupled from the grid frequency due to the grid-connected inverter connected to the grid. When the system frequency changes, it cannot provide effective power support. The virtual synchronous generator can provide frequency and power support for the system by simulating the operation characteristics of the synchronous generator. In order to further improve the grid-connected support performance of doubly-fed wind turbine, this paper introduces a cubic stiffness coupling link into the active power control system of the virtual synchronous generator. By establishing a two-degree-of-freedom system dynamic model with wind power under nonlinear elastic coupling, a nonlinear elastic coupling control strategy for doubly-fed wind turbine is proposed. Firstly, the virtual shafting coupling relationship between synchronous generator and doubly-fed wind turbine in virtual synchronous operation is analyzed. Secondly, a two-degree-of-freedom system dynamic model with wind power under nonlinear elastic coupling is established by introducing cubic stiffness through nonlinear power coupling. Thirdly, based on the Hamiltonian principle, the transient energy transfer process of the wind power grid-connected system after introducing the cubic stiffness is analyzed, and the inertia setting condition between the units are derived. Finally, a nonlinear elastic coupling control strategy based on doubly-fed wind turbine is proposed. And the parameters of controller are optimized according to the inertia setting condition. The doubly-fed wind turbine is used to efficiently transfer transient energy and effectively suppress power oscillation. Simulation analysis of the proposed nonlinear elastic coupling control shows that under the nonlinear elastic coupling, when the power oscillation occurs in the system, the power support potential of the doubly-fed wind turbine is further released, and the transient energy of the synchronous generator is efficiently transferred to wind turbine, which effectively suppresses the system power oscillation. When the system frequency changes, the doubly-fed wind turbine reduces the drop amplitude of the system frequency by providing effective power support, and reduces the power fluctuation amplitude of the synchronous generator, which significantly improves the stability of the system. The following conclusions can be drawn from the simulation analysis: (1) The doubly-fed wind turbine can provide inertia and damping support for the system under virtual synchronous control, but the synchronous operation mode limits the power support potential of the wind turbine, and the virtual inertia delays the recovery of the system frequency. (2) After satisfying the inertia ratio and cubic stiffness optimization conditions, the doubly-fed wind turbine under nonlinear elastic coupling can efficiently transfer the transient energy of the synchronous generator, effectively suppress the power oscillation, and significantly reduce the risk of system resonance. (3) Under the proposed nonlinear elastic coupling control strategy, the grid-connected support performance of the doubly-fed wind turbine is significantly improved by efficiently transferring the system transient energy to the new energy side. By comparing the stability support effects of maximum power point tracking control, virtual synchronous control and nonlinear elastic coupling control through simulation, it is verified that the doubly-fed wind turbine can more effectively release its power oscillation suppression and frequency support potential under the proposed control.
|
Received: 13 December 2023
|
|
|
|
|
[1] 余希瑞, 周林, 郭珂, 等. 含新能源发电接入的电力系统低频振荡阻尼控制研究综述[J]. 中国电机工程学报, 2017, 37(21): 6278-6290. Yu Xirui, Zhou Lin, Guo Ke, et al.A survey on low frequency oscillation damping control in power system integrated with new energy power generation[J]. Proceedings of the CSEE, 2017, 37(21): 6278-6290. [2] 程珊珊, 王海鑫, 杨子豪, 等. 虚拟同步发电机对系统低频振荡的影响及抑制方法综述[J]. 太阳能学报, 2023, 44(8): 119-129. Cheng Shanshan, Wang Haixin, Yang Zihao, et al.Overview of effect of virtual synchronous generators on low-frequency oscillation of power system and suppression methods[J]. Acta Energiae Solaris Sinica, 2023, 44(8): 119-129. [3] 王一珺, 杜文娟, 王海风. 大规模风电汇集系统小干扰稳定性研究综述[J]. 电网技术, 2022, 46(5): 1934-1946. Wang Yijun, Du Wenjuan, Wang Haifeng.Review on small signal stability analysis of large-scale wind power collection system[J]. Power System Technology, 2022, 46(5): 1934-1946. [4] 徐筱倩, 黄林彬, 汪震, 等. 双馈风电机组虚拟惯量控制对电力系统机电振荡的影响分析[J]. 电力系统自动化, 2019, 43(12): 11-17, 43. Xu Xiaoqian, Huang Linbin, Wang Zhen, et al.Analysis on impact of virtual inertia control of DFIG-based wind turbine on electromechanical oscillation of power system[J]. Automation of Electric Power Systems, 2019, 43(12): 11-17, 43. [5] 张祥宇, 胡剑峰, 付媛, 等. 风储联合系统的虚拟惯量需求与协同支撑[J]. 电工技术学报, 2024, 39(3): 672-685. Zhang Xiangyu, Hu Jianfeng, Fu Yuan, et al.Virtual inertia demand and collaborative support of wind power and energy storage system[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 672-685. [6] 吕志鹏, 盛万兴, 刘海涛, 等. 虚拟同步机技术在电力系统中的应用与挑战[J]. 中国电机工程学报, 2017, 37(2): 349-360. Lü Zhipeng, Sheng Wanxing, Liu Haitao, et al.Application and challenge of virtual synchronous machine technology in power system[J]. Proceedings of the CSEE, 2017, 37(2): 349-360. [7] 曹炜, 钦焕乘, 陆建忠, 等. 新型电力系统下虚拟同步机的定位和应用前景展望[J]. 电力系统自动化, 2023, 47(4): 190-207. Cao Wei, Qin Huancheng, Lu Jianzhong, et al.Orientation and application prospect of virtual synchronous generator in new power system[J]. Automation of Electric Power Systems, 2023, 47(4): 190-207. [8] 李少林, 王伟胜, 张兴, 等. 风力发电对系统频率影响及虚拟惯量综合控制[J]. 电力系统自动化, 2019, 43(15): 64-70. Li Shaolin, Wang Weisheng, Zhang Xing, et al.Impact of wind power on power system frequency and combined virtual inertia control[J]. Automation of Electric Power Systems, 2019, 43(15): 64-70. [9] 张波, 颜湘武, 黄毅斌, 等. 虚拟同步机多机并联稳定控制及其惯量匹配方法[J]. 电工技术学报, 2017, 32(10): 42-52. Zhang Bo, Yan Xiangwu, Huang Yibin, et al.Stability control and inertia matching method of multi-parallel virtual synchronous generators[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 42-52. [10] 秦本双, 徐永海, 贾焦心. 基于机械导纳法的SGs/VSGs转矩-频率动力学建模与分析[J]. 中国电机工程学报, 2020, 40(21): 6903-6913. Qin Benshuang, Xu Yonghai, Jia Jiaoxin.Modeling and analysis of SGs/VSGs torque-frequency dynamics based on mechanical admittance method[J]. Proceedings of the CSEE, 2020, 40(21): 6903-6913. [11] 王亚维, 刘邦银, 段善旭, 等. 虚拟同步控制的暂态特性优化策略研究[J]. 中国电机工程学报, 2019, 39(20): 5885-5893, 6169. Wang Yawei, Liu Bangyin, Duan Shanxu, et al.Research on transient characteristic optimization of virtual synchronization generator control strategy[J]. Proceedings of the CSEE, 2019, 39(20): 5885-5893, 6169. [12] Wang Weiyu, Jiang Lin, Cao Yijia, et al.A parameter alternating VSG controller of VSC-MTDC systems for low frequency oscillation damping[J]. IEEE Transac-tions on Power Systems, 2020, 35(6): 4609-4621. [13] 李武华, 王金华, 杨贺雅, 等. 虚拟同步发电机的功率动态耦合机理及同步频率谐振抑制策略[J]. 中国电机工程学报, 2017, 37(2): 381-391. Li Wuhua, Wang Jinhua, Yang Heya, et al.Power dynamic coupling mechanism and resonance suppression of synchronous frequency for virtual synchronous generators[J]. Proceedings of the CSEE, 2017, 37(2): 381-391. [14] 花赟玥, 杨超然, 何国庆, 等. 考虑小干扰稳定和频率稳定的虚拟惯量配置分析[J]. 清华大学学报(自然科学版), 2021, 61(5): 437-445. Hua Yunyue, Yang Chaoran, He Guoqing, et al.Virtual inertia configuration analysis considering small-signal stability and frequency stability[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(5): 437-445. [15] 宋琼, 张辉, 孙凯, 等. 多微源独立微网中虚拟同步发电机的改进型转动惯量自适应控制[J]. 中国电机工程学报, 2017, 37(2): 412-424. Song Qiong, Zhang Hui, Sun Kai, et al.Improved adaptive control of inertia for virtual synchronous generators in islanding micro-grid with multiple distributed generation units[J]. Proceedings of the CSEE, 2017, 37(2): 412-424. [16] 于彦雪, 关万琳, 陈晓光, 等. 基于序阻抗的虚拟同步机同步频率谐振现象[J]. 电工技术学报, 2022, 37(10): 2584-2595. Yu Yanxue, Guan Wanlin, Chen Xiaoguang, et al.Synchronous frequency resonance in virtual synchronous generator based on sequence-impedance[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2584-2595. [17] 孙大卫, 刘辉, 吴林林, 等. 虚拟同步发电机对低频振荡的影响建模与特性分析[J]. 电力系统自动化, 2020, 44(24): 134-144. Sun Dawei, Liu Hui, Wu Linlin, et al.Modeling and characteristic analysis on influence of virtual synchronous generator on low-frequency oscillation[J]. Automation of Electric Power Systems, 2020, 44(24): 134-144. [18] 曾德银, 姚骏, 张田, 等. 虚拟同步发电机多机并联系统的频率小信号稳定性分析研究[J]. 中国电机工程学报, 2020, 40(7): 2048-2061, 2385. Zeng Deyin, Yao Jun, Zhang Tian, et al.Research on frequency small-signal stability analysis of multi-parallel virtual synchronous generator-based system[J]. Proceedings of the CSEE, 2020, 40(7): 2048-2061, 2385. [19] 王亚军, 杨立波, 马斌, 等. 虚拟同步机惯量及阻尼系数协调优化方法[J]. 电力系统保护与控制, 2022, 50(19): 88-98. Wang Yajun, Yang Libo, Ma Bin, et al.Coordination and optimization strategy of virtual inertia and damping coefficient of a virtual synchronous generator[J]. Power System Protection and Control, 2022, 50(19): 88-98. [20] Zhang Xiangyu, Zhu Zhengzhen, Fu Yuan, et al.Optimized virtual inertia of wind turbine for rotor angle stability in interconnected power systems[J]. Electric Power Systems Research, 2020, 180: 106157. [21] 王淋, 巨云涛, 吴文传, 等. 面向频率稳定提升的虚拟同步化微电网惯量阻尼参数优化设计[J]. 中国电机工程学报, 2021, 41(13): 4479-4490. Wang Lin, Ju Yuntao, Wu Wenchuan, et al.Optimal design of inertia and damping parameters of virtual synchronous microgrid for improving frequency stability[J]. Proceedings of the CSEE, 2021, 41(13): 4479-4490. [22] Yao Fengjun, Zhao Jinbin, Li Xiangjun, et al.RBF neural network based virtual synchronous generator control with improved frequency stability[J]. IEEE Transactions on Industrial Informatics, 2021, 17(6): 4014-4024. [23] 杨涛, 廖勇. 含双馈风电场的互联电力系统虚拟惯量与虚拟阻尼协调控制方法[J]. 电力自动化设备, 2020, 40(11): 92-100. Yang Tao, Liao Yong.Coordinated control method of virtual inertia and virtual damping for interconnected power system with doubly-fed wind farm[J]. Electric Power Automation Equipment, 2020, 40(11): 92-100. [24] 刘华志, 张祥宇, 李永刚, 等. 基于虚拟联轴的双馈风力发电机组功率振荡抑制技术[J]. 中国电机工程学报, 2022, 42(16): 5910-5921, 6166. Liu Huazhi, Zhang Xiangyu, Li Yonggang, et al.Power oscillation suppression technology of DFIG-based wind generator based on virtual shaft coupling[J]. Proceedings of the CSEE, 2022, 42(16): 5910-5921, 6166. [25] 刘华志, 张祥宇, 李永刚, 等. 双馈风电机组的虚拟联轴控制与暂态能量传递[J]. 中国电机工程学报, 2022, 42(19): 7007-7019. Liu Huazhi, Zhang Xiangyu, Li Yonggang, et al.Transient energy transfer and virtual shaft coupling control of DFIG-based wind generation[J]. Pro-ceedings of the CSEE, 2022, 42(19): 7007-7019. [26] 陈依林, 杜敬涛, 崔海健, 等. 不同类型水平弹簧组合刚度非线性吸振器的性能分析及稳定性研究[J]. 力学学报, 2023, 55(1): 192-202. Chen Yilin, Du Jingtao, Cui Haijian, et al.Performance analysis and stability study of different types of nonlinear vibration absorbers with combined stiffness of horizontal springs[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 192-202. [27] 柴凯, 李爽, 楼京俊, 等. 非线性能量阱系统的强调制响应研究[J]. 湖南大学学报(自然科学版), 2022, 49(8): 82-92. Chai Kai, Li Shuang, Lou Jingjun, et al.Investigation on strongly modulated response of nonlinear energy sink system[J]. Journal of Hunan University (Natural Sciences), 2022, 49(8): 82-92. [28] Nguyen T A, Pernot S.Design criteria for optimally tuned nonlinear energy sinks—part 1: transient regime[J]. Nonlinear Dynamics, 2012, 69(1): 1-19. [29] 刘欣, 郭志博, 贾焦心, 等. 基于序阻抗的虚拟同步发电机并网稳定性分析及虚拟阻抗设计[J]. 电工技术学报, 2023, 38(15): 4130-4146. Liu Xin, Guo Zhibo, Jia Jiaoxin, et al.Stability analysis and virtual impedance design of virtual synchronous machine based on sequence impedance[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 4130-4146. [30] 韩应生, 孙海顺, 秦世耀, 等. 电压源型双馈风电并网系统小扰动低频稳定性分析[J]. 电工技术学报, 2023, 38(5): 1312-1324, 1374. Han Yingsheng, Sun Haishun, Qin Shiyao, et al.Low-frequency stability analysis of voltage-sourced doubly-fed wind power grid-connected system under small disturbance[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1312-1324, 1374. [31] 颜湘武, 张伟超, 崔森, 等. 基于虚拟同步机的电压源逆变器频率响应时域特性和自适应参数设计[J]. 电工技术学报, 2021, 36(增刊1): 241-254. Yan Xiangwu, Zhang Weichao, Cui Sen, et al.Time domain characteristics and adaptive parameter design of frequency response of voltage source inverter based on virtual synchronous machine[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 241-254. [32] 程雪坤, 孙旭东, 柴建云, 等. 电网对称故障下双馈风力发电机的虚拟同步控制策略[J]. 电力系统自动化, 2017, 41(20): 47-54, 125. Cheng Xuekun, Sun Xudong, Chai Jianyun, et al.Virtual synchronous control strategy for doubly-fed induction generator wind turbines under symmetrical grid faults[J]. Automation of Electric Power Systems, 2017, 41(20): 47-54, 125. [33] 尚磊, 胡家兵, 袁小明, 等. 电网对称故障下虚拟同步发电机建模与改进控制[J]. 中国电机工程学报, 2017, 37(2): 403-412. Shang Lei, Hu Jiabing, Yuan Xiaoming, et al.Modeling and improved control of virtual synchronous generators under symmetrical faults of grid[J]. Proceedings of the CSEE, 2017, 37(2): 403-412. |
|
|
|