|
|
Research on Rapid Calculation Method of Transient Temperature Rise of Winding of Dynamic Mode Decomposition-Adaptive Time Stepping Oil-Immersed Power Transformer |
Liu Gang, Hao Shiyuan, Zhu Zhangchen, Gao Chenglong, Liu Yunpeng |
Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University Baoding 071003 China |
|
|
Abstract In response to the current problem of slow calculation of transient temperature rise in oil-immersed power transformer windings, this paper proposes a dynamic mode decomposition (DMD)-adaptive time stepping (ATS) fast calculation strategy combined with dynamic mode decomposition method and adaptive variable step size method. Firstly, a dynamic mode decomposition algorithm is introduced using change features from the first few steps in the dynamic system to approximate the system changes over a period of time. The calculation time is reduced by selecting the primary mode and retaining the main change features of the system. The dynamic evolution rules of the system are obtained by decomposing the observation data of complex systems. Thus, rapid prediction of winding temperature rise is achieved. Secondly, this paper integrates the DMD theory and the ATS method to optimize the number of transient calculation steps. Adjusting the adaptive step size in transient calculation reduces the number of calculation steps, thereby reducing the overall transient calculation time. A numerical heat transfer model is established for the eight-zone split turn winding. The results of the proposed algorithm and the Fluent simulation are almost identical, with a maximum calculation error of no more than 0.3 K at the monitoring point position. The total computational time of the proposed algorithm is 5.99 seconds, only 1/89 of the Fluent simulation. Moreover, the time steps of the DMD-ATS algorithm for transient processes are only 4.7% of that of the Fluent simulation, indicating that the adaptive step size adjustment can effectively accelerate the transient calculation process. Finally, a temperature rise experimental platform is constructed based on the winding structure of oil-immersed power transformers. The temperature rise of the windings under operating conditions is measured, and the calculation results are compared with the experimental results. The maximum error in the field domain appears at 4.57 K, and the maximum average error is 3.46K, within an acceptable range throughout the entire temperature rise process. The proposed algorithm has a calculation time of 2.53 seconds and a preprocessing time of 66.61 seconds. Due to the combination of the ATS adaptive variable step-size method, the simulation time of 14410-27580 seconds is reduced from 1317-time steps to only 17-time steps. The computational efficiency is improved compared to traditional physical field numerical algorithms, which verifies the engineering application value of the proposed algorithm. This paper provides a new approach for rapidly calculating transient temperature rise in the windings of oil-immersed power transformers.
|
Received: 12 April 2023
|
|
|
|
|
[1] 唐钊, 刘轩东, 陈铭. 考虑流体动力学的干式变压器热网络模型仿真分析[J]. 电工技术学报, 2022, 42(18): 4777-4787. Tang Zhao, Liu Xuandong, Chen Ming.Simulation analysis of dry-type transformer thermal network model considering fluid dynamics[J]. Transactions of China Electrotechnical Society, 2022, 42(18): 4777-4787. [2] 张健, 胡玉耀, 宋士瞻, 等. 基于数值求解的油浸式变压器瞬态热点温度计算[J]. 高压电器, 2023, 59(6): 103-110, 127. Zhang Jian, Hu Yuyao, Song Shizhan, et al.Transient hot spot temperature calculation of oil immersed transformer based on numerical calculation[J]. High Voltage Apparatus, 2023, 59(6): 103-110, 127. [3] 李永建, 闫鑫笑, 张长庚, 等. 基于磁-热-流耦合模型的变压器损耗计算和热点预测[J]. 电工技术学报, 2020, 35(21): 4483-4491. Li Yongjian, Yan Xinxiao, Zhang Changgeng, et al.Transformer loss calculation and hot spot prediction based on magnetic thermal current coupling model[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4483-4491. [4] 王泽忠, 李明洋, 宣梦真, 等. 单相四柱式变压器直流偏磁下的温升试验及仿真分析[J]. 电工技术学报, 2021, 36(5): 1006-1013. Wang Zezhong, Li Mingyang, Xuan Mengzhen, et al.Temperature rise test and simulation analysis of single-phase four pillar transformer under DC bias[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1006-1013. [5] 刘云鹏, 李欢, 高树国, 等. 分布式光纤传感在大型变压器温度和绕组变形监测中的应用研究[J]. 中国电机工程学报, 2022, 42(16): 6126-6135. Liu Yunpeng, Li Huan, Gao Sshuguo, et al.Research on application of distributed optical fiber sensing in monitoring of temperature and winding deformation of large transformer[J]. Proceedings of the CSEE, 2022, 42(16): 6126-6135. [6] 刘云鹏, 李昕烨, 李欢, 等. 内置分布式光纤传感的35 kV油浸式变压器研制[J]. 高电压技术, 2020, 46(6): 1886-1894. Liu Yunpeng, Li Xinye, Li Huan, et al.Development of 35 kV oil-immersed transformer with built-in distributed optical fiber[J]. High Voltage Engineering, 2020, 46(6): 1886-1894. [7] 徐征宇, 张书琦, 廖和安, 等. 传感光纤与变压器电磁线一体化技术[J]. 中国电机工程学报, 2021, 41(19): 6816-6826. Xu Zhengyu, Zhang Shuqi, Liao Hean, et al.Integrated technology of distributed optical fiber and transformer electromagnetic wire[J]. Proceedings of the CSEE, 2021, 41(19): 6816-6826. [8] 骆小满, 阮江军, 邓永清, 等. 基于多物理场计算和模糊神经网络算法的变压器热点温度反演[J]. 高电压技术, 2020, 46(3): 860-866. Luo Xiaoman, Ruan Jiangjun, Deng Yongqing, et al.Transformer hot-spot temperature inversion based on multi-physics calculation and fuzzy neural network algorithm[J]. High Voltage Engineering, 2020, 46(3): 860-866. [9] 钟振鑫, 董玉玺, 张作刚, 等. 用于变压器温度预测的基于物理场数据增强的深度网络[J]. 高压电器, 2023, 59(8): 108-114. Zhong Zhenxin, Dong Yuxi, Zhang Zuogang, et al.Deep network based on physical data enhancement for Temperature[J]. High Voltage Apparatus, 2023, 59(8): 108-114. [10] 彭道刚, 陈跃伟, 钱玉良, 等. 基于粒子群优化-支持向量回归的变压器绕组温度软测量模型[J]. 电工技术学报, 2018, 33(8): 1742-1749, 1761. Peng Daoggang, Chen Yuewei, Qian Yuliang, et al.Transformer winding temperature soft measurement model based on particle swarm optimization-support vector regression[J]. Transactions of China Elec- trotechnical Society, 2018, 33(8): 1742-1749, 1761. [11] Liu Gang, Zheng Zhi, Ma Xun, et al.Numerical and experimental investigation of temperature distribution for oil-immersed transformer winding based on dimensionless least-squares and upwind finite element method[J]. IEEE Access, 2019, 7: 119110-119120. [12] 陈伟根, 苏小平, 孙才新, 等. 基于有限体积法的油浸式变压器绕组温度分布计算[J]. 电力自动化设备, 2011, 31(6): 23-27. Chen Weigen, Su Xiaoping, Sun Caixin, et al.Temperature distribution calculation based on FVM for oil-immersed power transformer windings[J]. Electric Power Automation Equipment, 2011, 31(6): 23-27. [13] 武卫革, 杜振斌, 刘刚, 等. 大型油浸式变压器绕组温度场仿真及验证[J]. 华北电力大学学报(自然科学版), 2020, 47(6): 68-74. Wu Weige, Du Zhengbin, Liu Gang, et al.Simulation and verification of winding temperature field for large oil immersed transformer[J]. Journal of North China Electric Power University (Natural Science Edition), 2020, 47(6): 68-74. [14] Liu Yunpeng, Li Xinye, Li Huan, et al.Experimental and numerical investigation of the internal temperature of an oil-immersed power transformer with DOFS[J]. Applied Sciences, 2020, 10(16): 5718. [15] Daniel J Tylavsky, Gary A McCulla. Transformer top-oil temperature modeling and simulation[J]. IEEE Transactions on Industry Applications, 2000, 36(5): 1219-1225. [16] 滕黎. 一种简化的油浸式变压器绕组热点温度计算模型[J]. 变压器, 2016, 53(2): 7-11. Teng Li.A simplified model for calculating oil- immersed transformer winding hot spot tempera- ture[J]. Transformer, 2016, 53(2): 7-11. [17] Zare A R, Haddadi A, Mahseredjian J, et al.Geomagnetic disturbance (GMD) Transformer thermal analysis tool: EPRI transformer thermal model (ETTM), version 1.0-Beta[J]. 2018. DOI: 10.13140/RG.2.2.26826.62400. [18] San O, Maulik R, Ahmed M.An artificial neural network framework for reduced order modeling of transient flows[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 77: 271-287. [19] Schmid P J.Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5-28. [20] Kutz J N, Brunton S L, Brunton B W, et al.Dynamic mode decomposition[M]. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2016. [21] 刘刚, 郝世缘, 胡万君, 等. 基于SCAS时间匹配算法油浸式变压器绕组瞬态温升计算方法[J]. 电工技术学报, 2024, 39(4): 1185-1197. Liu Gang, Hao Shiyuan, Hu Wanjun, et al.Transient temperature rise calculation of oil immersed transformer winding based on SCAS time matching algorithm[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1185-1197. [22] Yang F, Wu T, Jiang H, et al.A new method for transformer hot-spot temperature prediction based on dynamic mode decomposition[J]. Case Studies in Thermal Engineering, 2022, 37:102268. [23] 刘刚, 荣世昌, 武卫革, 等. 基于混合有限元法和降阶技术的油浸式变压器绕组2维瞬态流-热耦合场分析[J]. 高电压技术, 2022, 48(5): 1695-1705. Liu Gang, Rong Shichang, Wu Weige, et al.Two- dimensional transient flow-thermal coupling field analysis of oil-immersed transformer windings based on hybrid finite element method and reduced-order technology[J]. High Voltage Engineering, 2022, 48(5): 1695-1705. |
|
|
|