|
|
The Impact of Ice Accumulation Shape on the DC High Current Ice-Melting Time for a Single Conductor on Power Transmission Line |
Yang Guolin, Jiang Xingliang, Wang Maozheng, Hu Jianlin, Zhang Zhijin |
Xuefeng Mountain Energy Equipment Safety National Observation and Research Station Chongqing University Chongqing 400044 China |
|
|
Abstract In winter, the icing of transmission lines has emerged as a significant threat to power grid safety. Scholars have diligently researched and developed numerous de-icing methods, categorizing them based on their working principles into mechanical, thermal melt-icing, passive, and other methods. Despite these alternatives, DC high current melt-icing technology remains the preferred choice for transmission line de-icing. This study focuses on the actual operating conditions of single wire icing shapes on transmission lines, using three wire types (LGJ-240/30, LGJ-300/50, and LGJ-400/35) to calculate and analyze the DC high current melt-icing time for both circular and wing-shaped ice. Under the same wire type, an increase in melt-icing current density leads to a shorter melt-icing time for circular ice. For instance, when the current density increased from 1.5 A/mm² to 3 A/mm², the melt-icing time for circular ice decreased by 21.78%, 22.13%, and 22.55% for the three wire types. Similarly, with the same melt-icing current density, a larger wire cross-section results in a shorter circular ice melt-icing time. Comparing wire types from LGJ-240/30 to LGJ-400/35, the latter's melt-icing time was 70.73%, 72.26%, and 73.25% of the former across the three current densities. The impact of melt-icing current density on circular ice melt-icing time is more significant than the wire type under the same ice-covered environment. The pattern of melt-icing time variation with current density and wire type for wing-shaped ice mirrors that of circular ice, but numerically, the melt-icing time for wing-shaped ice is notably smaller. The ratio β, representing the wing-shaped ice melt-icing time to circular ice melt-icing time, ranges from 9.27% to 11.55%, with an average of 10.49%. In natural DC high-current melt-icing, LGJ-300/50 wire's wing-shaped ice melt-icing time was 10.6% of the circular ice melt-icing time, and for LGJ-400/35 wire, it was 8.3%. Consequently, the paper suggests inhibiting circular ice formation to promote wing-shaped ice growth as a means to reduce DC high current melt-icing time and decrease energy consumption.
|
Received: 18 January 2023
|
|
|
|
|
[1] 蒋兴良, 易辉. 输电线路覆冰及防护[M]. 北京: 中国电力出版社, 2002. [2] 张晓辉, 李阳, 钟嘉庆, 等. 基于安全因子及协同因子的源网多目标协调规划[J]. 电工技术学报, 2021, 36(9): 1842-1856. Zhang Xiaohui, Li Yang, Zhong Jiaqing, et al.Multi-objective coordinated planning of source network based on safety factor and coordination factor[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1842-1856. [3] 卢志刚, 李丹, 吕雪姣, 等. 含分布式电源的冰灾下配电网多故障抢修策略[J]. 电工技术学报, 2018, 33(2): 423-432. Lu Zhigang, Li Dan, Lü Xuejiao, et al.Multiple faults repair strategy under ice storm for distribution network with distributed generators[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 423-432. [4] 蒋兴良, 张志劲, 胡琴, 等. 再次面临电网冰雪灾害的反思与思考[J]. 高电压技术, 2018, 44(2): 463-469. Jiang Xingliang, Zhang Zhijin, Hu Qin, et al.Thinkings on the restrike of ice and snow disaster to the power grid[J]. High Voltage Engineering, 2018, 44(2): 463-469. [5] Pohlman J C, Landers P.Present state-of-the-art of transmission line icing[J]. IEEE Transactions on Power Apparatus and Systems, 1982 (8): 2443-2450. [6] Kálmán T, Farzaneh M, McClure G. Numerical analysis of the dynamic effects of shock-load-induced ice shedding on overhead ground wires[J]. Computers & Structures, 2007, 85(7/8): 375-384. [7] Kalman T.Dynamic behavior of iced cables subjected to mechanical shocks[D].Chicoutimi: Université du Québec à Chicoutimi, 2007. [8] Leblond A, Lamarche B, Bouchard D, et al.Development of a portable de-icing device for overhead ground wires[C]//Proceedings of the 11th International Workshop on Atmospheric Icing of Structures, Montreal, Canada, 2005: 399-404. [9] 胡琴, 姜涛, 蒋兴良, 等. 地线电磁脉冲除冰系统的振动加速度试验研究[J]. 电网技术, 2022, 46(11): 4541-4548. Hu Qin, Jiang Tao, Jiang Xingliang, et al.Experimental study on vibration acceleration of ground electromagnetic pulse deicing system[J]. Power System Technology, 2022, 46(11): 4541-4548. [10] 张志劲, 杨晟欢, 蒋兴良, 等. 电力设备热水除冰过程水射流特性[J]. 高电压技术, 2021, 47(3): 1012-1019. Zhang Zhijin, Yang Shenghuan, Jiang Xingliang, et al.Characteristics of water jet in hot water deicing process of power equipment[J]. High Voltage Engineering, 2021, 47(3): 1012-1019. [11] 蒋兴良, 毕聪来, 王涵, 等. 倒T型布置对绝缘子串覆冰及其交流闪络特性的影响[J].电工技术学报, 2019, 34(17): 3713-3720. Jiang Xingliang, Bi Conglai, Wang Han, et al.Effect of inverted T arrangement on icing and AC flashover characteristics of insulator string[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3713-3720. [12] 黄亚飞, 蒋兴良, 任晓东, 等. 采用涡流自热环防止输电线路冰雪灾害的方法研究[J].电工技术学报, 2021, 36(10): 2169-2177. Huang Yafei, Jiang Xingliang, Ren Xiaodong, et al.Research on prevention of snow and ice disaster of transmission lines by eddy current self-heating ring[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2169-2177. [13] 毕聪来, 蒋兴良, 韩兴波, 等. 采用扩径导线替代分裂导线的防冰方法[J].电工技术学报, 2020, 35(11): 2469-2477. Bi Conglai, Jiang Xingliang, Han Xingbo, et al.Anti-icing method using expanded wire instead of split wire[J]. Transactions of China Electrotechnical Society, 2020, 35(11): 2469-2477. [14] 韩兴波, 吴海涛, 郭思华, 等. 用于覆冰环境测量的旋转多导体直径选择方法研究[J].电工技术学报, 2022, 37(15): 3973-3980. Han Xingbo, Wu Haitao, Guo Sihua, et al.Research on Diameter selection method of rotating multi-conductor for Measurement of Icy Environment[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3973-3980. [15] 夏正春. 特高压输电线的覆冰舞动及脱冰跳跃研究[D]. 武汉: 华中科技大学, 2008. Xia Zhengchun.Research on galloping and ice-shedding of ultra-high-voltage transmission conductors [D]. Wuhan: Huazhong University of Science and Technology, 2008. [16] Meng X, Wang L, Hou L, et al.Dynamic characteristic of ice-shedding on UHV overhead transmission lines[J]. Cold Regions Science and Technology, 2011, 66(1): 44-52. [17] 曾薇, 周羽生, 黄欣超, 等. 考虑冰层下移的输电线路高频融冰温升影响因素分析[J]. 高压电器, 2023, 59(4): 98-105. Zheng Wei,Zhou Yusheng,Huang Xinchao, et al.Influencing factors analysis of high frequency ice melting temperature rise for transmission lines considering ice moving down[J]. High Voltage Apparatus, 2023, 59(4): 98-105. [18] 蒋兴良, 孙才新, 顾乐观, 等. 三峡地区导线覆冰的特性及雾凇覆冰模型[J]. 重庆大学学报(自然科学版), 1998, 21(2): 18-21. Jiang Xingliang, Sun Caixin, Gu Leguan, et al.Characteristics of traverse ice coating and Rime ice coating model in Three Gorges Area[J]. Journal of Chongqing University (Natural Science Edition), 1998, 21(02): 18-21. [19] 庄文兵, 祁创, 熊小伏, 等. 计及气象因素时间累积效应的输电线路覆冰预测[J]. 电力系统保护与控制, 2019, 47(17): 6-13. Zhuang Wenbing, Qi Chuang, Xiong Xiaofu, et al.Icing prediction of transmission lines considering the time cumulative effect of meteorological factors[J]. Power System Protection and Control, 2019, 47(17): 6-13 [20] 庄文兵, 祁创, 王建, 等. 基于微气象监测的输电线路覆冰动态过程估计模型[J]. 电力系统保护与控制, 2019, 47(14): 87-94. Zhuang Wenbing, Qi Chuang, Wang Jian, et al.Based on meteorological monitoring transmission lines ice dynamic process estimation model[J]. Power System Protection and Control, 2019, 47(14) : 87-94. [21] 桂重. 基于输电线路临域微地形因子的覆冰厚度预测模型研究[J].电工技术, 2022(15): 140-142. Gui Zhong.Research on ice cover thickness prediction model based on microtopographic factor in adjacent region of transmission lines[J]. China Electrical Engineering, 2022(15):140-142. [22] 胡京, 邓颖, 蒋兴良, 等. 输电线路覆冰垭口微地形的特征提取与识别方法[J]. 中国电力, 2022, 55(8): 135-142. Hu Jing, Deng Ying, Jiang Xingliang, et al.Feature extraction and recognition method of microterrain in transmission line ice pass[J]. Electric Power of China,2022,55(08):135-142. [23] 郝艳捧, 魏发生, 王斌, 等. 特殊地形下输电线路等值覆冰厚度计算模型有效性分析和改进研究[J].电网技术, 2022, 46(7): 2786-2793. Hao Yanbao, Wei Fa-Fei, Wang Bin, et al.Effectiveness analysis and improvement of equivalent ice thickness calculation model for transmission lines under special terrain[J]. Power System Technology, 202, 46(7):2786-2793. [24] 何青, 李军辉, 邓梦妍, 等. 架空输电导线覆冰冻结系数计算及其影响因素分析[J]. 电工技术学报, 2019, 34(19): 4162-4169. He Qing, Li Junhui, Deng Mengyan, et al.Calculation of Freezing Coefficient of Overhead Transmission Wire and Its Influencing Factors[J]. Transactions of China Electrotechnical Society,2019,34(19):4162-4169. [25] 黄新波, 高华, 朱永灿, 等. 输电导线粗糙覆冰表面对流换热特性[J]. 高电压技术, 2018, 44(11): 3509-3516. Huang Xinbo, Gao Hua, Zhu Yongcan, et al.Characteristics of convective heat transfer on rough ice-covered surface of transmission wire[J]. High Voltage Engineering, 2018, 44(11): 3509-3516. [26] 蒋兴良, 姜方义, 汪泉霖. 基于最优时间步长模型的输电导线雾凇覆冰预测[J]. 电工技术学报, 2018, 33(18): 4409-4418. Jiang Xingliang, Jiang Fangyi, Wang Quanlin, et al.Prediction of rime accretion on transmission line based on optimal time step model[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4408-4418. [27] Zhang Jian, Makkonen L, He Qing.A 2D numerical study on the effect of conductor shape on icing collision efficiency[J]. Cold Regions Science and Technology, 2017, 143: 52-58. [28] 蒋兴良, 侯乐东, 韩兴波, 等. 输电线路导线覆冰扭转特性的数值模拟[J].电工技术学报, 2020, 35(8): 1818-1826. Jiang Xingliang, Hou Ledong, Han Xingbo, et al.Numerical simulation of ice torsional characteristics of transmission line conductors[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1818-1826. [29] 韩兴波, 吴海涛, 郭思华, 等. 输电线路单导线覆冰和扭转的相互影响机制分析[J].电工技术学报, 2022, 37(17): 4508-4516. Han Xingbo, Wu Haitao, Guo Sihua, et al.Analysis on the Interaction Mechanism of single conductor Icing and Torsion in Transmission Line[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4508-4516. [30] 郭应龙, 李国兴, 尤传永. 输电线路舞动[M]. 北京: 中国电力出版社, 2003. [31] 蒋兴良, 范松海, 胡建林, 等. 输电线路直流短路融冰的临界电流分析[J]. 中国电机工程学报, 2010, 30(1): 111-116. Jiang Xingliang, Fan Songhai, Hu Jianlin, et al.Critical current analysis of DC short-circuit ice melting in transmission lines[J]. Proceedings of the CSEE, 2010, 30(1): 111-116. |
|
|
|