|
|
Research on the Oscillation Problem of AC-DC Microgrids Based on Frequency Domain Impedance Network Modeling and Analysis |
Wu Xiangyu1,2, Zhang Xiaohong1, Shang Zixuan1, Zhao Yigang3, Wu Xiaoyu4 |
1. School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China; 2. Beijing Engineering Research Center of Electric Rail Transportation Beijing 100044 China; 3. State Grid Shanxi Xinzhou Electric Power Company Xinzhou 034001 China; 4. Sate Grid Energy Research Institute Co. Ltd Beijing 102209 China |
|
|
Abstract Microgrids are an effective form of organizing and utilizing distributed power sources, and are also an important component of new power systems. The AC-DC microgrid combines the characteristics and advantages of both AC and DC microgrids. However, under the dynamic interaction between different types of power electronic converters and the power grid, AC-DC microgrids are prone to trigger broadband oscillation problems, seriously threatening the safe and stable operation of the system. The analysis of microgrid oscillation problems in existing studies is mainly based on impedance analysis and feature analysis, but both methods have certain limitations. Therefore, this article conducts research on modeling and analysis methods for oscillation problems in AC-DC microgrids based on frequency domain impedance network models. Firstly, based on the state space method, impedance models of various devices in the AC-DC microgrid system are established. Then, the various devices in the system are connected according to the topological relationship of the system, and an equivalent impedance network model of the AC-DC microgrid system in the frequency domain is established. Based on the principles of electrical networks, the node frequency domain admittance matrix and loop impedance frequency domain matrix of the system are calculated. Secondly, based on the frequency domain mode analysis method, indicators for the degree of node/loop oscillation participation and sensitivity indicators for equipment and control parameters of the AC-DC microgrid are established. The analysis method for the AC-DC propagation characteristics of oscillation is provided, which facilitates the clarification of the system oscillation mechanism and key influencing factors. Finally, the effectiveness of the above frequency domain impedance network modeling and oscillation stability analysis methods is verified through Matlab/ Simulink time-domain simulation and example analysis.
|
Received: 31 August 2023
|
|
|
|
|
[1] 吴珊, 边晓燕, 张菁娴, 等. 面向新型电力系统灵活性提升的国内外辅助服务市场研究综述[J]. 电工技术学报, 2023, 38(6): 1662-1677. Wu Shan, Bian Xiaoyan, Zhang Jingxian, et al.A review of domestic and foreign ancillary services market for improving flexibility of new power system[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1662-1677. [2] 张天策, 李庚银, 王剑晓, 等. 基于可行域投影理论的新能源电力系统协同运行方法[J]. 电工技术学报, 2023, DOI: 10.19595/j.cnki.1000-6753.tces.230196. Zhang Tiance, Li Gengyin, Wang Jianxiao, et al.coordinated operation method of renewable energy power systems based on feasible region projection theory[J]. Transactions of China Electrotechnical Society, 2023, DOI: 10.19595/j.cnki.1000-6753.tces. 230196. [3] 杨向真, 张徐进博, 杜燕, 等. 考虑直流子网影响的交直流混合微电网谐振特性分析[J]. 高电压技术, 2023, 49(2): 713-726. Yang Xiangzhen, Zhang Xujinbo, Du Yan, et al.Analysis of resonance characteristics of AC/DC hybrid microgrid considering the influence of DC subgrid[J]. High Voltage Engineering, 2023, 49(2): 713-726. [4] 吴翔宇, 张晓红, 许寅, 等. 微电网(群)宽频振荡分析和抑制研究进展与展望[J]. 电网技术, 2023, 47(9): 3727-3745. Wu Xiangyu, Zhang Xiaohong, Xu Yin, et al.Research progress and prospect of wide-band oscillations analysis and suppression for microgrid (clusters)[J]. Power System Technology, 2023, 47(9): 3727-3745. [5] 吴梦. 交直流混合微电网电能质量与稳定性分析[D]. 北京: 北京交通大学, 2019. [6] 韩鹏. 交流微电网孤岛运行控制及稳定性研究[D].北京: 中国矿业大学, 2022. [7] 刘振国, 金铭, 于海, 等. 交流微电网直流互联变流器系统多阻抗优化控制[J]. 中国电力, 2023, 56(2): 93-101, 156. Liu Zhenguo, Jin Ming, Yu Hai, et al.A multi- impedance optimization control for AC microgrid DC interconnected converter system[J]. Electric Power, 2023, 56(2): 93-101, 156. [8] 郑凯元, 杜文娟, 王海风. 聚合恒功率负荷对直流微电网稳定性影响的阻抗法分析[J]. 电网技术, 2021, 45(1): 134-148. Zheng Kaiyuan, Du Wenjuan, Wang Haifeng.DC microgrid stability affected by aggregated constant power loads based on impedance method[J]. Power System Technology, 2021, 45(1): 134-148. [9] Gao Fei, Bozhko S.Modeling and impedance analysis of a single DC bus-based multiple-source multiple- load electrical power system[J]. IEEE Transactions on Transportation Electrification, 2016, 2(3): 335-346. [10] 黄旭程, 何志兴, 伍文华, 等. 交直流微电网中变换器级联系统稳定性分析与协同控制[J]. 中国电机工程学报, 2019, 39(5): 1432-1443. Huang Xucheng, He Zhixing, Wu Wenhua, et al.Stability analysis of converters cascade system in the hybrid AC/DC microgird and coordinative control[J]. Proceedings of the CSEE, 2019, 39(5): 1432-1443. [11] 胡翔. 交直流混合微电网的建模与稳定性分析[D]. 济南: 山东大学, 2018. [12] 李晓英. 基于MMC的交直流混合型微电网孤岛运行控制与稳定性分析[D]. 兰州: 兰州理工大学, 2021. [13] Zhang Haitao, Mehrabankhomartash M, Saeedifard M, et al.Impedance analysis and stabilization of point- to-point HVDC systems based on a hybrid AC-DC impedance model[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3224-3238. [14] Liu Huakun, Xie Xiaorong. Impedance network modeling and quantitative stability analysis of sub-/ super-synchronous oscillations for large-scale wind power systems[J]. IEEE Access, 1809, 6: 34431-34438. [15] 王一珺, 王海风. 直流电压动态时间尺度下大规模直驱风电场振荡稳定性及参数稳定域分析[J]. 中国电机工程学报, 2021, 41(增刊1): 92-107. Wang Yijun, Wang Haifeng.Analysis of oscillation stability and parameter stability region of large-scale direct-drive wind farm under DC voltage dynamic time scale[J]. Proceedings of the CSEE, 2021, 41(S1): 92-107. [16] 王洋, 杜文娟, 王海风. 多风电场-多机电力系统次同步振荡稳定性分析[J]. 中国电机工程学报, 2019, 39(22): 6562-6572. Wang Yang, Du Wenjuan, Wang Haifeng.Stability analysis of subsynchronous oscillation in multi- machine power system with multiple wind farms[J]. Proceedings of the CSEE, 2019, 39(22): 6562-6572. [17] 朱宇昕, 赵晋斌, 毛玲, 等. 并网系统的广义阻抗比及其稳定性分析与研究[J]. 中国电机工程学报, 2020, 40(22): 7240-7249. Zhu Yuxin, Zhao Jinbin, Mao Ling, et al.Generalized impedance ratio and stability analysis for grid- connected systems[J]. Proceedings of the CSEE, 2020, 40(22): 7240-7249. [18] 占颖, 吴琛, 谢小荣, 等. 风电并网系统次同步振荡的频域模式分析[J]. 电力系统自动化, 2020, 44(18): 90-97. Zhan Ying, Wu Chen, Xie Xiaorong, et al.Frequency domain modal analysis of subsynchronous oscillation in grid-connected wind power system[J]. Automation of Electric Power Systems, 2020, 44(18): 90-97. [19] 占颖, 谢小荣, 柴炜, 等. 风电次/超同步振荡的安全域分析[J]. 中国电机工程学报, 2022, 42(23): 8446-8454. Zhan Ying, Xie Xiaorong, Chai Wei, et al.Analyzing the security region of sub/super-synchronous oscillation in wind power integrated systems[J]. Proceedings of the CSEE, 2022, 42(23): 8446-8454. [20] 杨超然. 新能源电力系统小干扰同步稳定性分析和稳定裕度提升策略研究[D]. 杭州: 浙江大学, 2021. [21] 邢法财. 含非同步机电源电力系统的宽频谐振问题研究[D]. 杭州: 浙江大学, 2021. [22] 施静容, 李勇, 贺悝, 等. 一种提升交直流混合微电网动态特性的综合惯量控制方法[J]. 电工技术学报, 2020, 35(2): 337-345. Shi Jingrong, Li Yong, He Li, et al.A comprehensive inertia control method for improving the dynamic characteristics of hybrid AC-DC microgrid[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 337-345. [23] 张靖, 张志文, 胡斯佳, 等. 独立微电网风储协同调频的功率柔性分配策略[J]. 电工技术学报, 2022, 37(15): 3767-3780. Zhang Jing, Zhang Zhiwen, Hu Sijia, et al.A flexible power distribution strategy with wind turbine gen- erator and energy storage for frequency regulation in isolated microgrid[J]. Transactions of China Elec- trotechnical Society, 2022, 37(15): 3767-3780. [24] 吴天昊, 谢小荣, 姜齐荣, 等. 考虑频率耦合及交直流端口耦合效应的并网变流器三端口导纳模型[J]. 中国电机工程学报, 2022, 42(1): 249-261. Wu Tianhao, Xie Xiaorong, Jiang Qirong, et al.Three-port admittance modeling of grid-connected converters considering frequency-coupling and AC/DC coupling effects[J]. Proceedings of the CSEE, 2022, 42(1): 249-261. [25] Zhang Chen, Cai Xu, Molinas M, et al.On the impedance modeling and equivalence of AC/DC-side stability analysis of a grid-tied type-IV wind turbine system[J]. IEEE Transactions on Energy Conversion, 2019, 34(2): 1000-1009. [26] Pedra J, Sainz L, Monjo L.Three-port small signal admittance-based model of VSCs for studies of multi-terminal HVDC hybrid AC/DC transmission grids[J]. IEEE Transactions on Power Systems, 2021, 36(1): 732-743. [27] 潘鹏宇, 胡海涛, 肖冬华, 等. 高速列车变流器“扫频式”dq阻抗测量中的频率耦合干扰机理及抑制策略[J]. 电工技术学报, 2022, 37(4): 990-999, 1009. Pan Pengyu, Hu Haitao, Xiao Donghua, et al.Frequency coupling interference mechanism and suppression strategy for frequency-sweeping-based dq impedance measurement of high-speed train con- verter[J]. Transactions of China Electrotechnical Society, 2022, 37(4): 990-999, 1009. [28] Zhang Qiufang, He Jinghan, Xu Yin, et al.Average- value modeling of direct-driven PMSG-based wind energy conversion systems[J]. IEEE Transactions on Energy Conversion, 2022, 37(1): 264-273. [29] 宗皓翔, 张琛, 蔡旭. 电力电子主导的交直流混联电网振荡分析与评估[J]. 中国电机工程学报, 2023, 43(10): 3844-3856. Zong Haoxiang, Zhang Chen, Cai Xu.Oscillation analysis and evaluation of the power electronics- dominated hybrid AC/DC grid[J]. Proceedings of the CSEE, 2023, 43(10): 3844-3856. [30] 占颖. 大规模风电次/超同步振荡的频域模式分析与安全域研究[D]. 北京: 清华大学, 2022. [31] 仰彩霞. 基于模态分析法的电力系统谐波谐振问题研究及其灵敏度分析[D]. 武汉: 武汉大学, 2010. |
|
|
|