|
|
Influence of the Structural Similarities of Polar Molecules on DC Properties of Grafted Modified Cross-Linked Polyethylene Materials |
Wang Kai1, Zhao Xindong1, Zheng Haifeng2, Yang Xu1, Shao Manzhi1, Zhao Hong1, Wang Xuan1 |
1. Key Lab of Engineering Dielectrics and Its Application Ministry of Education;Harbin University of Science and Technology Harbin 150080 China; 2. Harbin Hapro Electric Technology Co. Ltd Harbin 150040 China |
|
|
Abstract Cross-linked polyethylene (XLPE) materials are limited in their application as insulation materials for high-voltage direct current cables, due to issues of the temperature and field-dependent conductivity, as well as problems with space charge injection and accumulation. Generally, graft-modified XLPE can significantly improve the space charge distribution characteristics and reduce the DC conductivity. However, the difficulty lies in the micro-doping and low-gasification temperature of small molecule grafting monomers, which affects the difficulty of the melting grafting process. Additionally, the pre-grafted low-density polyethylene (LDPE) materials is severely affected by the initiation of free radicals during the preparation process, which affects the grafting rate and rheological properties of the materials. At the same time, the improvement of the DC electrical performance of pre-grafted and cross-linked XLPE materials still needs further exploration. Therefore, this paper proposes the preparation of graft-modified materials using a low-temperature high-pressure metering pump in conjunction with a parallel co-rotating twin-screw extruder, then evaluates the grafting rate, rheological properties, and crystallization characteristics of the materials. The pre-grafting materials is then diluted to the same grafting content to prepare graft-modified XLPE materials. Through tests on DC conductivity and space charge distribution, combined with first-principles calculations, the effect of pre-grafted XLPE materials on DC improvement is explored, as well as the influence of grafting monomer structural differences on the materials. First, acrylate small molecule compounds (methyl acrylate (MA), butyl acrylate (BA), methyl methacrylate (MMA)) were prepared to graft LDPE materials. Based on the analysis of infrared spectroscopy and melt flow rate test, the characteristic absorption peak of carbonyl group (C=O) appeared at wave number 1 740 cm-1, indicating the successful grafting of small molecules onto the LDPE macromolecular chains. The grafting masterbatch prepared with 0.2 phr peroxide initiator, dicumyl peroxide (DCP), showed a high grafting rate and acceptable melt flow rate. Compared to MMA monomer containing easily breakable bonds and methyl groups with steric hindrance, MA and BA grafting modified XLPE materials exhibited a higher grafting rate. The grafting masterbatch and LDPE material had similar crystallinity, with spherulite size of about 3.8~3.9 µm. Further, the three different grafted materials were diluted in specific proportions and subjected to the cross-linking process. It was found in the temperature-dependent DC conductivity test that XLPE-g-MA exhibited the largest decrease in conductivity-temperature sensitivity. Under polarization voltage of 40 kV/mm at 80℃, XLPE-g-MA demonstrated excellent characteristics in the spatial charge distribution. Combined with the first-principles simulation calculation, it can be further obtained that the trap energy levels of the three grafted modified XLPE models are relatively consistent, and the improvement effect of the DC performance is significantly related to the electrostatic potential distribution of the grafted monomer. In summary, XLPE-g-MA exhibited excellent DC electrical performance and is highly promising as an insulation material for HVDC cables.
|
Received: 31 August 2023
|
|
|
|
|
[1] 宋柯, 钱定冬, 鲍国栋, 等. 基于M-W极化模型的低电场极性反转下XLPE/硅橡胶空间电荷与电场分布特性研究[J]. 电工技术学报, 2023, 38(16): 4479-4488. Song Ke, Qian Dingdong, Bao Guodong, et al.Study on space charge and field distribution characteristics of XLPE/SR under low electric field polarity reversal based on the M-W model[J]. Transactions of China Electrotechnical Society, 2023, 38(16): 4479-4488. [2] 魏艳慧, 郑元浩, 龙海泳, 等. 绝缘层厚度对高压直流电缆电场和温度场分布的影响[J]. 电工技术学报, 2022, 37(15): 3932-3940. Wei Yanhui, Zheng Yuanhao, Long Haiyong, et al.Influence of insulation layer thickness on electric field and temperature field of HVDC cable[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3932-3940. [3] 李盛涛, 王诗航, 李建英. 高压直流电缆料的研发进展与路径分析[J]. 高电压技术, 2018, 44(5): 1399-1411. Li Shengtao, Wang Shihang, Li Jianying.Research progress and path analysis of insulating materials used in HVDC cable[J]. High Voltage Engineering, 2018, 44(5): 1399-1411. [4] 陈新, 李文鹏, 李震宇, 等. 高压直流XLPE绝缘材料及电缆关键技术展望[J]. 高电压技术, 2020, 46(5): 1571-1579. Chen Xin, Li Wenpeng, Li Zhenyu, et al.Prospect on key technology of the XLPE insulation materials and HVDC cables[J]. High Voltage Engineering, 2020, 46(5): 1571-1579. [5] 陈向荣, 孟繁博, 夏峰, 等. 脱气处理对高压直流用500kV XLPE绝缘特性及其聚集形态的影响[J]. 中国电机工程学报, 2021, 41(10): 3645-3656, 3688. Chen Xiangrong, Meng Fanbo, Xia Feng, et al.Effect of degassing treatment on 500kV XLPE insulation characteristics and aggregation structure[J]. Proceedings of the CSEE, 2021, 41(10): 3645-3656, 3688. [6] 罗兵, 孟繁博, 王婷婷, 等. 脱气处理对高压直流电缆绝缘特性的影响[J]. 电工技术学报, 2021, 36(增刊2): 730-735. Luo Bing, Meng Fanbo, Wang Tingting, et al.Effect of degassing treatments on insulation characteristics of high voltage DC cables[J]. Transactions of China Electrotechnical Society, 2021, 36(S2): 730-735. [7] Chen G, Zhang C, Stevens G.Space charge in LLDPE loaded with nanoparticles[C]//2007 Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, Vancouver, BC, Canada, 2008: 275-278. [8] Sharad P A, Sathish Kumar K, Ahmad M H, et al.Space charge and conductivity measurement of XLPE nanocomposites for HVDC insulation-permittivity as a nanofiller selection parameter[J]. IET Science, Measurement & Technology, 2018, 12(8): 1058-1065. [9] 宫斌, 张冶文, 郑飞虎, 等. 纳米TiO2掺杂对低密度聚乙烯空间电荷行为的影响[J]. 材料研究学报, 2005, 19(5): 519-524. Gong Bin, Zhang Yewen, Zheng Feihu, et al.Influence of nano-TiO2 doped low density polyethylene on space charge behavior[J]. Chinese Journal of Materials Research, 2005, 19(5): 519-524. [10] 吴建东, 尹毅, 兰莉, 等. 纳米填充浓度对LDPE/Silica纳米复合介质中空间电荷行为的影响[J]. 中国电机工程学报, 2012, 32(28): 2, 177-183. Wu Jiandong, Yin Yi, Lan Li, et al. The influence of nano-filler concentration on space charge behavior in LDPE/Silica nanocomposites[J]. Proceedings of the CSEE, 2012, 32(28): 2, 177-183. [11] 谢浩然, 罗行, 周科朝, 等. 基于聚丙烯的介电复合材料研究进展与挑战[J]. 中国有色金属学报, 2021, 31(8): 2014-2028. Xie Haoran, Luo Hang, Zhou Kechao, et al.Research progress and challenges of polypropylene-based dielectric composites[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(8): 2014-2028. [12] 刘骥, 闫爽, 王守明, 等. 基于低频高压频域介电谱的XLPE电缆电树枝老化状态评估[J]. 电工技术学报, 2023, 38(9): 2510-2518. Liu Ji, Yan Shuang, Wang Shouming, et al.Evaluation of electrical tree aging state of XLPE cables based on low frequency and high voltage frequency domain spectroscopy[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2510-2518. [13] 付一峰, 陈俊岐, 赵洪, 等. 交联聚乙烯接枝氯乙酸烯丙酯直流介电性能[J]. 电工技术学报, 2018, 33(18): 4372-4381. Fu Yifeng, Chen Junqi, Zhao Hong, et al.DC dielectric properties of crosslinking polyethylene grafted chloroacetic acid allyl ester[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4372-4381. [14] 李春阳, 赵洪, 韩宝忠, 等. 电压稳定剂对交联聚乙烯直流绝缘性能的影响[J]. 中国电机工程学报, 2018, 38(23): 7071-7079, 7141. Li Chunyang, Zhao Hong, Han Baozhong, et al.Effect of voltage stabilizer on the DC insulation properties of XLPE[J]. Proceedings of the CSEE, 2018, 38(23): 7071-7079, 7141. [15] 石逸雯, 陈向荣, 孟繁博, 等. 电压稳定剂及其含量对高压直流用500kV XLPE电缆材料绝缘性能的影响[J]. 电工技术学报, 2022, 37(22): 5851-5861. Shi Yiwen, Chen Xiangrong, Meng Fanbo, et al.The effect of voltage stabilizer and its content on the insulation properties of 500kV HVDC cable insulation materials[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5851-5861. [16] Zhao Xindong, Zhao Hong, Sun Weifeng.Significantly improved electrical properties of crosslinked polyethylene modified by UV-initiated grafting MAH[J]. Polymers, 2020, 12(1): 62. [17] Zhang Chengcheng, Chang Jianxin, Zhang Hongyu, et al.Improved direct current electrical properties of crosslinked polyethylene modified with the polar group compound[J]. Polymers, 2019, 11(10): 1624. [18] Yang Xu, Zhao Hong, Li Chunyang, et al.Improved wide-temperature-range insulation properties of block polypropylene by UV-irradiated cografting of maleic anhydride and 4-tert-butylstyrene[J]. ACS Applied Polymer Materials, 2023, 5(1): 247-258. [19] 韦良强, 孙静, 滕海山, 等. 引发剂对PP熔融接枝GMA产物热稳定性及力学性能的影响[J]. 塑料工业, 2013, 41(9): 101-104. Wei Liangqiang, Sun Jing, Teng Haishan, et al.Effect of initiator on thermal stability and mechanical properties of PP melt grafting GMA[J]. China Plastics Industry, 2013, 41(9): 101-104. [20] 曾红, 李建宇, 王锡臣. 聚合物表面紫外光接枝改性的研究[J]. 现代化工, 1999, 19(8): 11-13. Zeng Hong, Li Jianyu, Wang Xichen.UV photografting modification of polymer surface[J]. Modern Chemical Industry, 1999, 19(8): 11-13. [21] 杨颖, 游蛟, 贾志东, 等. 10 kV交联聚乙烯电缆运行状态评估分析[J]. 高电压技术, 2017, 43(5): 1684-1692. Yang Ying, You Jiao, Jia Zhidong, et al.Evaluation analysis of 10 kV XLPE cable’s operation condition[J]. High Voltage Engineering, 2017, 43(5): 1684-1692. [22] 李佳林, 段志强, 龚诚, 等. 分子结构对丙烯酸酯类单体接枝LLDPE影响的研究[J]. 高分子学报, 2012(11): 1349-1354. Li Jialin, Duan Zhiqiang, Gong Cheng, et al.Molecular structure effect on melt grafting of acrylates onto LLDPE[J]. Acta Polymerica Sinica, 2012(11): 1349-1354. [23] 王勇, 姚占海, 宋永贤, 等. 反应挤出条件对PP-g-GMA接枝率、接枝效率和熔体流动速率的影响[J]. 应用化学, 2001, 18(6): 466-468. Wang Yong, Yao Zhanhai, Song Yongxian, et al.Influence of reactive extruding conditions on the grafting degree, grafting efficiency and melt flow rate of PP-g-GMA[J]. Chinese Journal of Applied Chemistry, 2001, 18(6): 466-468. [24] 陈铮铮, 赵健康, 欧阳本红, 等. 直流与交流交联聚乙烯电缆料绝缘特性的差异及其机理分析[J]. 高电压技术, 2014, 40(9): 2644-2652. Chen Zhengzheng, Zhao Jiankang, Ouyang Benhong, et al.Difference in insulation characteristics and mechanism between AC and DC XLPE cable’s material[J]. High Voltage Engineering, 2014, 40(9): 2644-2652. [25] Lu Tian, Chen Feiwu.Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. [26] 侯华, 余小娟, 周文俊, 等. 绝缘气体介电强度的构效关系[J]. 高等学校化学学报, 2018, 39(11): 2477-2484. Hou Hua, Yu Xiaojuan, Zhou Wenjun, et al.Theoretical investigations on the structure-activity relationship to the dielectric strength of the insulation gases[J]. Chemical Journal of Chinese Universities, 2018, 39(11): 2477-2484. [27] Zhang Chengcheng, Wang Tingting, Sun Weifeng, et al.Grafting of antioxidant onto polyethylene to improve DC dielectric and thermal aging properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(2): 541-549. [28] 李进, 赵仁勇, 杜伯学, 等. 量子化学计算在高压直流绝缘领域中的应用进展[J]. 高电压技术, 2020, 46(3): 772-781. Li Jin, Zhao Renyong, Du Boxue, et al.Application progress of quantum chemical calculation in the field of HVDC insulation[J]. High Voltage Engineering, 2020, 46(3): 772-781. [29] Wang Weiwang, Min Daomin, Li Shengtao.Understanding the conduction and breakdown properties of polyethylene nanodielectrics: effect of deep traps[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(1): 564-572. |
|
|
|