[1] 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833.
Kang Chongqing, Du Ershun, Li Yaowang, et al.Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3): 821-833.
[2] 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29): 4999-5008.
Zhou Xiaoxin, Lu Zongxiang, Liu Yingmei, et al.Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008.
[3] 潘郑楠, 邓长虹, 徐慧慧, 等. 考虑灵活性补偿的高比例风电与多元灵活性资源博弈优化调度[J]. 电工技术学报, 2023, 38(增刊1): 56-69.
Pan Zhengnan, Deng Changhong, Xu Huihui, et al.Game optimization scheduling of high proportion wind power and multiple flexible resources considering flexibility compensation[J]. Transactions of China Electrotechnical Society, 2023, 38(S1): 56-69.
[4] 李建林, 马会萌, 惠东. 储能技术融合分布式可再生能源的现状及发展趋势[J]. 电工技术学报, 2016, 31(14): 1-10, 20.
Li Jianlin, Ma Huimeng, Hui Dong.Present development condition and trends of energy storage technology in the integration of distributed renewable energy[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 1-10, 20.
[5] 代倩, 吴俊玲, 秦晓辉, 等. 提升局部区域新能源外送能力的储能容量优化配置方法[J]. 电力系统自动化, 2022, 46(3): 67-74.
Dai Qian, Wu Junling, Qin Xiaohui, et al.Optimal configuration method of energy storage capacity for improving delivery ability of renewable energy in regional area[J]. Automation of Electric Power Systems, 2022, 46(3): 67-74.
[6] 李相俊, 盛兴, 闫士杰, 等. 基于交替方向乘子法的超大规模储能系统分布式协同优化[J]. 电网技术, 2020, 44(5): 1681-1688.
Li Xiangjun, Sheng Xing, Yan Shijie, et al.Distributed cooperative optimization for ultra-large-scale storage system based on alternating direction multiplier method[J]. Power System Technology, 2020, 44(5): 1681-1688.
[7] 蔡福霖, 胡泽春, 曹敏健, 等. 提升新能源消纳能力的集中式与分布式电池储能协同规划[J]. 电力系统自动化, 2022, 46(20): 23-32.
Cai Fulin, Hu Zechun, Cao Minjian, et al.Coordinated planning of centralized and distributed battery energy storage for improving renewable energy accommodation capability[J]. Automation of Electric Power Systems, 2022, 46(20): 23-32.
[8] 张博, 唐巍, 蔡永翔, 等. 基于一致性算法的户用光伏逆变器和储能分布式控制策略[J]. 电力系统自动化, 2020, 44(2): 86-94.
Zhang Bo, Tang Wei, Cai Yongxiang, et al.Distributed control strategy of residential photovoltaic inverter and energy storage based on consensus algorithm[J]. Automation of Electric Power Systems, 2020, 44(2): 86-94.
[9] 杨子龙, 宋振浩, 潘静, 等. 分布式光伏/储能系统多运行模式协调控制策略[J]. 中国电机工程学报, 2019, 39(8): 2213-2220, 4.
Yang Zilong, Song Zhenhao, Pan Jing, et al.Multi-mode coordinated control strategy of distributed PV and energy storage system[J]. Proceedings of the CSEE, 2019, 39(8): 2213-2220, 4.
[10] 温春雪, 赵天赐, 于赓, 等. 基于改进粒子群算法的储能优化配置[J]. 电气技术, 2022, 23(10): 1-9, 58.
Wen Chunxue, Zhao Tianci, Yu Geng, et al.Optimization configuration of energy storage based on the improved particle swarm optimization[J]. Electrical Engineering, 2022, 23(10): 1-9, 58.
[11] 程林, 齐宁, 田立亭. 考虑运行控制策略的广义储能资源与分布式电源联合规划[J]. 电力系统自动化, 2019, 43(10): 27-35, 43.
Cheng Lin, Qi Ning, Tian Liting.Joint planning of generalized energy storage resource and distributed generator considering operation control strategy[J]. Automation of Electric Power Systems, 2019, 43(10): 27-35, 43.
[12] 李勇, 姚天宇, 乔学博, 等. 基于联合时序场景和源网荷协同的分布式光伏与储能优化配置[J]. 电工技术学报, 2022, 37(13): 3289-3303.
Li Yong, Yao Tianyu, Qiao Xuebo, et al.Optimal configuration of distributed photovoltaic and energy storage system based on joint sequential scenario and source-network-load coordination[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3289-3303.
[13] 黄志强, 陈业伟, 毛志鹏, 等. 柔性多状态开关与分布式储能系统联合接入规划[J]. 电力系统自动化, 2022, 46(14): 29-37.
Huang Zhiqiang, Chen Yewei, Mao Zhipeng, et al.Joint access planning of soft open point and distributed energy storage system[J]. Automation of Electric Power Systems, 2022, 46(14): 29-37.
[14] GSMA.中国5G垂直行业应用案例2022[EB/OL].[2022-03-28]https://www.gsma.com/greater-china/resources/5g-in-verticals-in-china-2022-cn/
[15] 张涌. 通信运营商的碳达峰、碳中和之路探讨[J]. 邮电设计技术, 2021(6): 1-4.
Zhang Yong.Discussion on road of carbon peak and carbon neutralization for communication operators[J]. Designing Techniques of Posts and Telecommunications, 2021(6): 1-4.
[16] 麻秀范, 孟祥玉, 朱秋萍, 等. 计及通信负载的5G基站储能调控策略[J]. 电工技术学报, 2022, 37(11): 2878-2887.
Ma Xiufan, Meng Xiangyu, Zhu Qiuping, et al.Control strategy of 5G base station energy storage considering communication load[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2878-2887.
[17] Huang Xueqing, Han Tao, Ansari N.Smart grid enabled mobile networks: jointly optimizing BS operation and power distribution[J]. IEEE/ACM Transactions on Networking, 2017, 25(3): 1832-1845.
[18] Labidi W, Chahed T, Elayoubi S E.Optimal battery management strategies in mobile networks powered by a smart grid[J]. IEEE Transactions on Green Communications and Networking, 2018, 2(3): 859-867.
[19] 曾博, 穆宏伟, 董厚琦, 等. 考虑5G基站低碳赋能的主动配电网优化运行[J]. 上海交通大学学报, 2022, 56(3): 279-292.
Zeng Bo, Mu Hongwei, Dong Houqi, et al.Optimization of active distribution network operation considering decarbonization endowment from 5G base stations[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 279-292.
[20] Renga D, Al Haj Hassan H, Meo M, et al. Energy management and base station on/off switching in green mobile networks for offering ancillary services[J]. IEEE Transactions on Green Communications and Networking, 2018, 2(3): 868-880.
[21] Al Haj Hassan H, Renga D, Meo M, et al. A novel energy model for renewable energy-enabled cellular networks providing ancillary services to the smart grid[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(2): 381-396.
[22] Yong Pei, Zhang Ning, Hou Qingchun, et al.Evaluating the dispatchable capacity of base station backup batteries in distribution networks[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 3966-3979.
[23] 麻秀范, 冯晓瑜. 考虑5G网络用电需求及可靠性的变电站双Q规划法[J]. 电工技术学报, 2023, 38(11): 2962-2976.
Ma Xiufan, Feng Xiaoyu.Double Q planning method for substation considering power demand of 5G network and reliability[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 2962-2976.
[24] 中华人民共和国住房和城乡建设部. GB 51194—2016 通信电源设备安装工程设计规范[S]. 北京: 中国计划出版社, 2017.
[25] 李俊双, 胡炎, 邰能灵. 计及通信负载与供电可靠性的5G基站储能与配电网协同优化调度[J]. 上海交通大学学报, 2023, 57(7): 791-802.
Li Junshuang, Hu Yan, Tai Nengling.Collaborative optimization scheduling of 5G base station energy storage and distribution network considering communication load and power supply reliability[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 791-802.
[26] 王凯亮, 孔慧超, 李俊辉, 等. 考虑配电网可靠性的储能系统选址定容优化[J]. 南方电网技术, 2022, 16(4): 21-29.
Wang Kailiang, Kong Huichao, Li Junhui, et al.Optimization of energy storage system location and capacity considering the reliability of distribution network[J]. Southern Power System Technology, 2022, 16(4): 21-29.
reliability[J]. Southern Power Grid Technology, 2022, 16(04): 21-29. DOI: 10.13648/j.cnki.issn1674-0629.2022.04.003
[27] 王晓卫, 康乾坤, 梁振锋, 等. 考虑5G基站储能参与配网供电恢复研究[J/OL]. 电工技术学报, 2023: 1-18. (2023-05-18). https://kns.cnki.net/kcms/detail/11.2188.TM.20230518.1116.004.html.
Wang Xiaowei, Kang Qiankun, Liang Zhenfeng, et al. Distribution network restoration supply method considers 5G base station energy storage participation[J/OL]. Transactions of China Electrotechnical Society, 2023: 1-18. (2023-05-18). https://kns.cnki.net/kcms/detail/11.2188.TM.20230518.1116.004.html.
[28] 周宸宇, 冯成, 王毅. 基于移动用户接入控制的5G通信基站需求响应[J]. 中国电机工程学报, 2021, 41(16): 5452-5462.
Zhou Chenyu, Feng Cheng, Wang Yi.Demand response of 5G communication base stations based on admission control of mobile users[J]. Proceedings of the CSEE, 2021, 41(16): 5452-5462.
[29] 吴盛军, 李群, 刘建坤, 等. 基于储能电站服务的冷热电多微网系统双层优化配置[J]. 电网技术, 2021, 45(10): 3822-3832.
Wu Shengjun, Li Qun, Liu Jiankun, et al.Bi-level optimal configuration for combined cooling heating and power multi-microgrids based on energy storage station service[J]. Power System Technology, 2021, 45(10): 3822-3832.
[30] 吴小刚, 刘宗歧, 田立亭, 等. 基于改进多目标粒子群算法的配电网储能选址定容[J]. 电网技术, 2014, 38(12): 3405-3411.
Wu Xiaogang, Liu Zongqi, Tian Liting, et al.Energy storage device locating and sizing for distribution network based on improved multi-objective particle swarm optimizer[J]. Power System Technology, 2014, 38(12): 3405-3411. |