|
|
DC-Signal-Injection-Based Online Parameters Identification for Permanent Magnet Synchronous Machine Considering Variation of Equivalent Electromagnetic Loss Resistance |
Ma Yilin1,2, Yuan Hao1,2, Yin Wei1,2, Yang Huan1,2 |
1. College of Electrical Engineering Zhejiang University Hangzhou 310027 China; 2. Zhejiang Provincial Key Laboratory of Electrical Machine Systems Hangzhou 310027 China |
|
|
Abstract Permanent magnet synchronous machines (PMSMs) are widely used for their high operating efficiency. During the application, the parameters of PMSMs may vary a lot when considering the effect of temperature, magnetic saturation, and so on. In this case, the performance of some optimal control strategies, such as the maximum efficiency control and current decoupling control, may decay. Thus, to achieve high-performance control, online parameter identification is important. However, there are few parameter identification methods considering the ferromagnetic loss and its variation with currents, while the ferromagnetic loss occupies a great proportion of the PMSMs' loss. Therefore, this paper integrates ferromagnetic loss and copper loss as electromagnetic loss. Then, an improved DC-signal-injection-based online parameters identification is proposed considering equivalent electromagnetic loss resistance variation. Firstly, the magnetic saturation of PMSMs and the variation of electromagnetic loss with current are discussed. Due to the magnetic saturation characteristic of ferromagnetic materials, the magnetic permanence of PMSMs may be decreased as the current rises, which, in turn, affects the inductance and flux linkage. Besides, when considering the change of current vectors, the copper loss may be variable due to the proximate effect. Meanwhile, the ferromagnetic loss may also vary with the changeable magnetic distribution. An improved series electromagnetic loss resistance model is proposed. Apparent flux linkage and incremental inductance are used to characterize the magnetic saturation, and change rates of the equivalent resistance are used to represent variations in electromagnetic loss. Secondly, 4 groups of d-/q-axis operating currents are chosen based on the criterion of alternating changes in d-/q-axis currents. According to the analysis, if the current increment of each change is non-zero, the steady-state voltage equations of these 4 groups are linearly independent. That is, the corresponding coefficient matrix is full-rank, allowing for the full parameters identification. Thirdly, a least mean square (LMS) algorithm is adopted to solve the 4 groups of steady-state voltage equations due to the complexity of analytical computation arising from the high-rank coefficient matrix. The LMS algorithm calculates the gradient of voltage estimation errors' mean square to each model parameter based on the measured voltages, currents, and speeds. Then, the model parameters are updated iteratively based on the corresponding gradients at each step. After iteration, the model parameters that meet the preset voltage estimation accuracy are obtained. Finally, the accuracy of the proposed method is validated using a prototype PMSM. Experimental results show that, compared with the sinusoidal-signal-injection-based method and the traditional DC-signal-injection- based method, the proposed method is more precise in identifying electromagnetic resistance and apparent flux linkage, with an average relative error of less than 2.3%. In addition, the proposed method has high identification accuracy for torque and incremental inductance, with average relative errors less than 0.9% and 3.5%, respectively. However, there is room for improving the identification performance of the equivalent resistance change rate.
|
Received: 16 February 2023
|
|
|
|
|
[1] 郭磊磊, 王朋帅, 李琰琰, 等. 不同代价函数下永磁同步电机模型预测控制参数失配可视化分析[J]. 电工技术学报, 2023, 38(4): 903-914. Guo Leilei, Wang Pengshuai, Li Yanyan, et al.Visual analysis of parameters mismatch in model predictive control for permanent magnet synchronous motor under different cost functions[J]. Transactions of China Electrotechnical Society, 2023, 38(4): 903-914. [2] Balasubramanian L, Bhuiyan N A, Javied A, et al.Design and optimization of interior permanent magnet (IPM) motor for electric vehicle applications[J]. CES Transactions on Electrical Machines and Systems, 2023, 7(2): 202-209. [3] 朱洒, 曾峰, 陆剑波, 等. 考虑PWM谐波损耗的车用扁线内嵌式永磁同步电机效率图简化工程计算[J]. 电工技术学报, 2022, 37(22): 5687-5703. Zhu Sa, Zeng Feng, Lu Jianbo, et al.Simplified engineering calculation of efficiency map of interior permanent magnet synchronous machines with hairpin windings considering PWM-induced harmonic losses[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5687-5703. [4] 高剑, 李承栩, 黄守道, 等. 高磁路饱和永磁同步电机永磁体负载磁链动态估算[J]. 电工技术学报, 2022, 37(22): 5638-5648. Gao Jian, Li Chengxu, Huang Shoudao, et al.Dynamic estimation of permanent magnet load flux linkage of permanent magnet synchronous motor with high magnetic circuit saturation[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5638-5648. [5] Hang Jun, Wu Han, Ding Shichuan, et al.Improved loss minimization control for IPMSM using equivalent conversion method[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 1931-1940. [6] Reigosa D, Kang Yegu, Martínez M, et al.SPMSMs sensorless torque estimation using high-frequency signal injection[J]. IEEE Transactions on Industry Applications, 2020, 56(3): 2700-2708. [7] 吴荒原, 王双红, 辜承林, 等. 内嵌式永磁同步电机改进型解耦控制[J]. 电工技术学报, 2015, 30(1): 30-37. Wu Huangyuan, Wang Shuanghong, Gu Chenglin, et al.An improved decoupling control strategy for the IPMSMS[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 30-37. [8] 李婕, 杨淑英, 谢震, 等. 基于有效信息迭代快速粒子群优化算法的永磁同步电机参数在线辨识[J]. 电工技术学报, 2022, 37(18): 4604-4613. Li Jie, Yang Shuying, Xie Zhen, et al.Online parameter identification of permanent magnet syn- chronous motor based on fast particle swarm optimization algorithm with effective information iterated[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4604-4613. [9] 苏有成, 陈志辉. 基于电感扰动的三相横向磁通永磁电机参数辨识与估算位置偏差修正[J]. 电工技术学报, 2023, 38(12): 3165-3175. Su Youcheng, Chen Zhihui.Parameter identification and estimated position deviation correction of a three- phase transverse flux permanent magnet machine based on inductance perturbation injection[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3165-3175. [10] Li Xinyue, Kennel R.General formulation of Kalman- filter-based online parameter identification methods for VSI-fed PMSM[J]. IEEE Transactions on Indu- strial Electronics, 2021, 68(4): 2856-2864. [11] 连传强, 肖飞, 高山, 等. 基于实验标定及双时间尺度随机逼近理论的内置式永磁同步电机参数辨识[J]. 中国电机工程学报, 2019, 39(16): 4892-4898, 4991. Lian Chuanqiang, Xiao Fei, Gao Shan, et al.Parameter identification for interior permanent magnet synchronous motor based on experimental calibration and stochastic approximation theory with two time scales[J]. Proceedings of the CSEE, 2019, 39(16): 4892-4898, 4991. [12] Dang D Q, Rafaq M S, Choi H H, et al.Online parameter estimation technique for adaptive control applications of interior PM synchronous motor drives[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3): 1438-1449. [13] Zhang Jindong, Peng Fei, Huang Yunkai, et al.Online inductance identification using PWM current ripple for position sensorless drive of high-speed surface- mounted permanent magnet synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2022, 69(12): 12426-12436. [14] Choi K, Kim Y, Kim K S, et al.Using the stator current ripple model for real-time estimation of full parameters of a permanent magnet synchronous motor[J]. IEEE Access, 2019, 7: 33369-33379. [15] Yu Yelong, Huang Xiaoyan, Li Zhaokai.Overall electrical parameters identification for IPMSMs using current derivative to avoid rank deficiency[J]. IEEE Transactions on Industrial Electronics, 2023, 70(7): 7515-7520. [16] Liu Zirui, Fan Xinggang, Kong Wubin, et al.Improved small-signal injection-based online multi- parameter identification method for IPM machines considering cross-coupling magnetic saturation[J]. IEEE Transactions on Power Electronics, 2022, 37(12): 14362-14374. [17] Wang Qiwei, Wang Gaolin, Zhao Nannan, et al.An impedance model-based multiparameter identification method of PMSM for both offline and online con- ditions[J]. IEEE Transactions on Power Electronics, 2021, 36(1): 727-738. [18] 吴春, 赵宇纬, 孙明轩. 采用测量电压的永磁同步电机多参数在线辨识[J]. 中国电机工程学报, 2020, 40(13): 4329-4340. Wu Chun, Zhao Yuwei, Sun Mingxuan.Multipara- meter online identification for permanent magnet synchronous machines using voltage measurements[J]. Proceedings of the CSEE, 2020, 40(13): 4329-4340. [19] Feng Guodong, Lai Chunyan, Mukherjee K, et al.Current injection-based online parameter and VSI nonlinearity estimation for PMSM drives using current and voltage DC components[J]. IEEE Transa- ctions on Transportation Electrification, 2016, 2(2): 119-128. [20] 谷鑫, 胡升, 史婷娜, 等. 基于神经网络的永磁同步电机多参数解耦在线辨识[J]. 电工技术学报, 2015, 30(6): 114-121. Gu Xin, Hu Sheng, Shi Tingna, et al.Muti-parameter decoupling online identification of permanent magnet synchronous motor based on neural network[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 114-121. [21] 刘细平, 胡卫平, 丁卫中, 等. 永磁同步电机多参数辨识方法研究[J]. 电工技术学报, 2020, 35(6): 1198-1207. Liu Xiping, Hu Weiping, Ding Weizhong, et al.Research on multi-parameter identification method of permanent magnet synchronous motor[J]. Transa- ctions of China Electrotechnical Society, 2020, 35(6): 1198-1207. [22] Li Chen, Kudra B, Balaraj V, et al.Absolute inductance estimation of PMSM considering high- frequency resistance[J]. IEEE Transactions on Energy Conversion, 2021, 36(1): 81-94. [23] Balamurali A, Kundu A, Li Ze, et al.Improved harmonic iron loss and stator current vector determination for maximum efficiency control of PMSM in EV applications[J]. IEEE Transactions on Industry Applications, 2021, 57(1): 363-373. [24] Kumar P, Bhaskar D V, Muduli U R, et al.Iron-loss modeling with sensorless predictive control of PMBLDC motor drive for electric vehicle appli- cation[J]. IEEE Transactions on Transportation Electrification, 2020, 7(3): 1506-1515. [25] 曹阳, 刘旭. 计及损耗的混合励磁电机建模与硬件在环实时仿真系统[J]. 电工技术学报, 2020, 35(22): 4657-4665. Cao Yang, Liu Xu.Modeling method for hybrid- excited machine and hardware-in-loop real-time simulation system with accounting for loss calcu- lation[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4657-4665. [26] Urasaki N, Senjyu T, Uezato K.Relationship of parallel model and series model for permanent magnet synchronous motors taking iron loss into account[J]. IEEE Transactions on Energy Conversion, 2004, 19(2): 265-270. [27] Senjyu T, Shimabukuro T, Uezato K.Vector control of synchronous permanent magnet motors including stator iron loss[J]. International Journal of Electronics, 1996, 80(2): 181-190. [28] Kazerooni M, Hamidifar S, Kar N C.Analytical modelling and parametric sensitivity analysis for the PMSM steady-state performance prediction[J]. IET Electric Power Applications, 2013, 7(7): 586-596. [29] Feng Guodong, Lai Chunyan, Kar N C.A novel current injection-based online parameter estimation method for PMSMs considering magnetic saturation[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-4. [30] Zhu Z Q, Liang Dawei, Liu Kan.Online parameter estimation for permanent magnet synchronous machines: an overview[J]. IEEE Access, 2021, 9: 59059-59084. [31] Kemmetmüller W, Faustner D, Kugi A.Modeling of a permanent magnet synchronous machine with internal magnets using magnetic equivalent circuits[J]. IEEE Transactions on Magnetics, 2014, 50(6): 1-14. [32] Kim J, Park Y J.Approximate closed-form formula for calculating ohmic resistance in coils of parallel round wires with unequal pitches[J]. IEEE Transa- ctions on Industrial Electronics, 2014, 62(6): 3482-3489. [33] Yu Yelong, Huang Xiaoyan, Li Zhaokai, et al.Full parameter estimation for permanent magnet syn- chronous motors[J]. IEEE Transactions on Industrial Electronics, 2022, 69(5): 4376-4386. |
|
|
|