[1] 高德欣, 郑晓雨, 王义, 等. 电动汽车充电状态监测与多级安全预报警方法[J]. 电工技术学报, 2022, 37(9): 2252-2262.
Gao Dexin, Zheng Xiaoyu, Wang Yi, et al.A state monitoring and multi-level safety pre-warning method for electric vehicle charging process[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2252-2262.
[2] 武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725.
Wu Longxing, Pang Hui, Jin Jiamin, et al.A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1703-1725.
[3] 王义军, 左雪. 锂离子电池荷电状态估算方法及其应用场景综述[J]. 电力系统自动化, 2022, 46(14): 193-207.
Wang Yijun, Zuo Xue.Review on estimation methods for state of charge of lithium-ion battery and their application scenarios[J]. Automation of Electric Power Systems, 2022, 46(14): 193-207.
[4] Zhou Wenlu, Zheng Yanping, Pan Zhengjun, et al.Review on the battery model and SOC estimation method[J]. Processes, 2021, 9(9): 1685.
[5] Al Hadi A M R, Ekaputri C, Reza M. Estimating the state of charge on lead acid battery using the open circuit voltage method[J]. Journal of Physics: Conference Series, 2019, 1367(1): 012077.
[6] Zhang Mingyue, Fan Xiaobin.Design of battery management system based on improved ampere-hour integration method[J]. International Journal of Electric and Hybrid Vehicles, 2022, 14(1/2): 1.
[7] Masmoudi A, Hamdi J, Hadrich Belguith L.Deep learning for sentiment analysis of Tunisian dialect[J]. Computación y Sistemas, 2021, 25(1): 129-148.
[8] 刘素贞, 袁路航, 张闯, 等. 基于超声时域特征及随机森林的磷酸铁锂电池荷电状态估计[J]. 电工技术学报, 2022, 37(22): 5872-5885.
Liu Suzhen, Yuan Luhang, Zhang Chuang, et al.State of charge estimation of LiFeO4 batteries based on time domain features of ultrasonic waves and random forest[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5872-5885.
[9] 李超然, 肖飞, 樊亚翔, 等. 基于门控循环单元神经网络和Huber-M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法[J]. 电工技术学报, 2020, 35(9): 2051-2062.
Li Chaoran, Xiao Fei, Fan Yaxiang, et al.A hybrid approach to lithium-ion battery SOC estimation based on recurrent neural network with gated recurrent unit and huber-M robust Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2051-2062.
[10] Wei Meng, Ye Min, Li Jia bo, et al. State of charge estimation of lithium-ion batteries using LSTM and NARX neural networks[J]. IEEE Access, 2020, 8: 189236-189245.
[11] Tian Huixin, Chen Jianhua.Deep learning with spatial attention-based CONV-LSTM for SOC estimation of lithium-ion batteries[J]. Processes, 2022, 10(11): 2185.
[12] 李宁, 何复兴, 马文涛, 等. 基于经验模态分解的门控循环单元神经网络的锂离子电池荷电状态估计[J]. 电工技术学报, 2022, 37(17): 4528-4536.
Li Ning, He Fuxing, Ma Wentao, et al.State-of-charge estimation of lithium-ion battery based on gated recurrent unit using empirical mode decomposition[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4528-4536.
[J]. Transactions of China Electrotechnical Society, 2022,37(17):4528-4536.
[13] Jiao Meng, Wang Dongqing, Qiu Jianlong.A GRU-RNN based momentum optimized algorithm for SOC estimation[J]. Journal of Power Sources, 2020, 459: 228051.
[14] Zhou Haoyi, Zhang Shanghang, Peng Jieqi, et al.Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12): 11106-11115.
[15] Liu Xiaowei, Li Kenli, Li Keqin.Attentive semantic and perceptual faces completion using self-attention generative adversarial networks[J]. Neural Processing Letters, 2020, 51(1): 211-229.
[16] 何滢婕, 刘月峰, 边浩东, 等. 基于Informer的电池荷电状态估算及其稀疏优化方法[J]. 电子学报, 2023, 51(1): 50-56.
He Yingjie, Liu Yuefeng, Bian Haodong, et al.State-of-charge estimation of lithium-ion battery based on informer and its sparse optimization method[J]. Acta Electronica Sinica, 2023, 51(1): 50-56.
[17] Luo Tao, Cao Xudong, Li Jin, et al.Multi-task prediction model based on ConvLSTM and encoder-decoder[J]. Intelligent Data Analysis, 2021, 25(2): 359-382.
[18] Liu Di, Li Qiang, Li Sen, et al.Non-autoregressive sparse transformer networks for pedestrian trajectory prediction[J]. Applied Sciences, 2023, 13(5): 3296.
[19] Abumohsen M, Owda A Y, Owda M.Electrical load forecasting using LSTM, GRU, and RNN algorithms[J]. Energies, 2023, 16(5): 2283.
[20] Wang Jinrui, Han Baokun, Bao Huaiqian, et al.Data augment method for machine fault diagnosis using conditional generative adversarial networks[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(12): 2719-2727.
[21] Chemali E, Kollmeyer P J, Preindl M, et al.Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6730-6739.
[22] Vidal C, Kollmeyer P, Chemali E, et al.Li-ion battery state of charge estimation using long short-term memory recurrent neural network with transfer learning[C]//2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 2019: 1-6.
[23] Xing Yinjiao, He Wei, Pecht M, et al.State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures[J]. Applied Energy, 2014, 113: 106-115.
[24] Nakamura K, Hong B W.Adaptive weight decay for deep neural networks[J]. IEEE Access, 2019, 7: 118857-118865. |