|
|
Differential Protection Performance for Converter Transformer Intertap Short-Circuit Faults in On-Load Tap Changers |
Yan Chenguang1, Zhang Peng1, Xu Ya1, Wu Juzhen2, Li Lingnan2 |
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China; 2. State Grid Economic and Technological Research Institute Co. Ltd Beijing 102209 China |
|
|
Abstract In recent years, explosions and fire accidents caused by converter transformer intertap short-circuit faults inside on-load tap changers (OLTCs) have occurred in succession, seriously threatening the safe operation of the power grid. As the main protection for converter transformers, the insufficient sensitivity and rapidity of differential protection under such faults have attracted widespread attention. However, due to the lack of effective theoretical models and calculation methods for intertap short-circuit faults in OLTCs, the fault process is difficult to reproduce, and the existing protection performance remains to be further studied. Given this background, this paper proposed a direct field-circuit coupling model and calculation method for converter transformer intertap faults in OLTCs. The bidirectional field-circuit coupling enabled the transient calculations of the winding leakage flux and the short-circuit current, and the improved black box model was adopted to simulate the time-varying arc-in-oil conductance characteristics. With this method, intertap fault simulations were carried out on a typical single-phase two-core-limb converter transformer, and the differential protection performance under short-circuit faults at different tap positions was quantitatively analyzed. First, the converter transformer intertap short-circuit fault process was analyzed based on a typical vacuum-type OLTC circuit topology and intertap short-circuit loop. Second, the governing equation of the internal electromagnetic field and the constraint equation of the external electric circuit were successively established and unified as coupled equations in matrix form. With an improved black-box arc model directly integrated into the short-circuit loop, the direct field-circuit coupling relations and a corresponding calculation method for converter transformer intertap short-circuit faults were developed to capture the transient interactions among the electromagnetic field, the electric circuit and the electric arc in the insulating oil. Third, with a simulation model of a ZZDFPZ-509400/500-400 single-phase two-core-limb converter transformer in a ±800 kV converter system, direct field-circuit calculations were carried out on the Ansys Maxwell and Simplorer platform, and the magnetic flux distributions, the short-circuit current and the terminal currents were accordingly obtained. Finally, on the basis of the calculation results in the study cases, three typical differential protection schemes configured in actual relay protection devices were evaluated and the operating behaviors under short-circuit faults between different taps were discussed. The calculation results show that under a serious intertap fault, the magnetic flux distributions inside the converter transformer are significantly distorted and the radial leakage flux density in the vicinity of the shorted turns reaches 3.77 T at maximum. Correspondingly, with a large electromotive force induced on the shorted turns, a high-amplitude circulating current is produced with a peak value of 92.87 kA. For the ratio differential protection and the fault incremental ratio differential protection adopted in certain protection devices, the severest intertap short-circuit fault in the middle of the winding can be detected within 17.6 ms and 5.6 ms after the fault occurs, respectively. When the shorted turns are at the winding ends, the root-mean-square value of the differential current is 0.23(pu), and the ratio differential protection exhibits inadequate sensitivity. The following conclusions can be drawn from the calculation and analysis: (1) The severities of short-circuit faults between different taps are remarkably different, and the shorted turns in the middle of the winding correspond to the most serious fault condition. (2) For intertap short-circuit faults at the winding ends, the differential current does not change significantly, and the ratio differential protection has the risk of rejection due to insufficient sensitivity. (3) Since the zero-sequence current under the intertap short-circuit fault manifests as a through current, the existing zero-sequence differential protection schemes also have difficulty reflecting such faults effectively.
|
Received: 20 June 2022
|
|
|
|
|
[1] 朱英浩, 沈大中. 换流变压器用有载分接开关[M]. 北京: 中国电力出版社, 2016. [2] 郭贤珊, 李凤祁, 阮思烨, 等. 高压直流换流变压器有载分接开关控制优化[J]. 电力建设, 2021, 42(2): 9-19. Guo Xianshan, Li Fengqi, Ruan Siye, et al.Optimization on control strategy of tap changer in HVDC converter transformer[J]. Electric Power Construction, 2021, 42(2): 9-19. [3] 徐海军, 王进, 廖文锋, 等. 换流变有载分接开关非电量保护优化配置试验研究[J]. 变压器, 2021, 58(10): 48-52. Xu Haijun, Wang Jin, Liao Wenfeng, et al.Experimental study on optimal configuration of pressure relief device, pressure and oil flow relay of on-load tap-changer[J]. Transformer, 2021, 58(10): 48-52. [4] 杨帆, 池骋, 刘刚, 等. 计及温度-电场强度非线性的换流变压器瞬态电场影响分析[J]. 电工技术学报, 2020, 35(23): 4971-4979. Yang Fan, Chi Cheng, Liu Gang, et al.Study on transient insulation condition of converter transformer based on nonlinearity between temperature and electric field[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4971-4979. [5] 黄天超, 王泽忠. 特高压换流变压器拉板损耗的频率特性分析[J]. 电工技术学报, 2021, 36(19): 4132-4139. Huang Tianchao, Wang Zezhong.Frequency characteristic analysis of flitch plate losses in UHV converter transformer[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4132-4139. [6] 郑劲. 换流变压器及监造技术[M]. 北京: 中国电力出版社, 2016. [7] 翁汉琍, 林湘宁. 换流站主设备保护关键技术研究[M]. 北京: 科学出版社, 2021. [8] 楚皓翔, 宋宇, 李涵. 500kV变压器纵差保护试验方法[J]. 电气技术, 2022, 23(3): 87-91. Chu Haoxiang, Song Yu, Li Han.Test method of 500kV transformer differential protection[J]. Electrical Engineering, 2022, 23(3): 87-91. [9] Bastard P, Bertrand P, Meunier M.A transformer model for winding fault studies[J]. IEEE Transactions on Power Delivery, 1994, 9(2): 690-699. [10] Kezunovic M, Guo Yong.Modeling and simulation of the power transformer faults and related protective relay behavior[J]. IEEE Transactions on Power Delivery, 2000, 15(1): 44-50. [11] 王雪, 王增平. 变压器内部故障仿真模型的设计[J]. 电网技术, 2004, 28(12): 50-52. Wang Xue, Wang Zengping.Study of simulation of transformer with internal faults[J]. Power System Technology, 2004, 28(12): 50-52. [12] 郝文斌, 李群湛. 三相五芯柱变压器内部故障仿真模型研究[J]. 电力自动化设备, 2007, 27(8): 43-47. Hao Wenbin, Li Qunzhan.Simulation of internal fault of three-phase five-leg transformer[J]. Electric Power Automation Equipment, 2007, 27(8): 43-47. [13] 王赞基, 唐起超, 刘秀成. 电力变压器内部短路故障对短路电抗的影响[J]. 中国电机工程学报, 2006, 26(21): 15-21. Wang Zanji, Tang Qichao, Liu Xiucheng.Effects of internal short circuit faults on short circuit reactance of power transformer[J]. Proceedings of the CSEE, 2006, 26(21): 15-21. [14] 潘超, 米俭, 王格万, 等. 基于场路耦合的变压器绕组匝间短路电磁谐响应分析方法[J]. 电工技术学报, 2019, 34(4): 673-682. Pan Chao, Mi Jian, Wang Gewan, et al.Electromagnetic harmonic response analysis method of inter-turn short circuit in transformer winding based on field circuit coupling[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 673-682. [15] 唐起超, 王赞基, 王维俭. 多绕组电力变压器内部短路稳态分析 (一)建模与仿真[J]. 电力系统自动化, 2006, 30(10): 44-47, 74. Tang Qichao, Wang Zanji, Wang Weijian.Steady-state analysis of internal short circuits of multi-winding power transformer part I modeling and simulations[J]. Automation of Electric Power Systems, 2006, 30(10): 44-47, 74. [16] 唐起超, 王赞基, 王维俭. 多绕组电力变压器内部短路稳态分析 (二)实验验证与差动保护灵敏度分析[J]. 电力系统自动化, 2006, 30(11): 41-43, 66. Tang Qichao, Wang Zanji, Wang Weijian.Steady-state analysis of internal short circuits of multi-winding power transformer part Ⅱ experiment verification and sensitivity analysis of differential relay protection[J]. Automation of Electric Power Systems, 2006, 30(11): 41-43, 66. [17] 柳维衡, 郑涛. 基于不同故障情况的特高压变压器差动保护仿真研究[J]. 现代电力, 2010, 27(1): 12-16. Liu Weiheng, Zheng Tao.Simulation research on UHV transformer DIFP based on different fault conditions[J]. Modern Electric Power, 2010, 27(1): 12-16. [18] 林磊, 陈川, 胡鑫, 等. 不同故障下特高压换流变压器差动保护动作特性分析[J]. 电力系统保护与控制, 2017, 45(21): 123-133. Lin Lei, Chen Chuan, Hu Xin, et al.Research on the characteristics of ultra-high voltage converter transformer differential protection under the internal and external faults[J]. Power System Protection and Control, 2017, 45(21): 123-133. [19] 金瑞, 鲍斌, 时伯年. 变压器差动保护的三种比率制动方式及其系数整定的研究[J]. 电力系统保护与控制, 2018, 46(19): 81-87. Jin Rui, Bao Bin, Shi Bonian.Research on three kinds of percentage restraint methods and their coefficient setting of transformer differential protection[J]. Power System Protection and Control, 2018, 46(19): 81-87. [20] 段若晨, 王丰华, 周荔丹, 等. 利用窄带噪声辅助多元经验模态分解算法检测换流变压器用有载分接开关机械状态[J]. 电工技术学报, 2017, 32(10): 182-189. Duan Ruochen, Wang Fenghua, Zhou Lidan, et al.Mechanical condition detection of on-load tap-changer in converter transformer based on narrowband noise assisted multivariate empirical mode decomposition algorithm[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 182-189. [21] 张知先, 陈伟根, 汤思蕊, 等. 基于互补集总经验模态分解和局部异常因子的有载分接开关状态特征提取及异常状态诊断[J]. 电工技术学报, 2019, 34(21): 4508-4518. Zhang Zhixian, Chen Weigen, Tang Sirui, et al.State feature extraction and anomaly diagnosis of on-load tap-changer based on complementary ensemble empirical mode decomposition and local outlier factor[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4508-4518. [22] 马宏忠, 严岩. 基于混沌理论和GOA-K-means算法的有载分接开关状态特征分析计算方法[J]. 电工技术学报, 2021, 36(7): 1399-1406. Ma Hongzhong, Yan Yan.Analysis and calculation method of on-load tap changers state characteristics based on chaos theory and grasshopper optimization algorithm-K-means algorithm[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1399-1406. [23] 张德明. 变压器真空有载分接开关[M]. 北京: 中国电力出版社, 2015. [24] 贺博, 王鹏, 吴锴, 等. 多物理场中染污绝缘油内杂质相动力学行为研究综述[J]. 电工技术学报, 2022, 37(1): 266-282. He Bo, Wang Peng, Wu Kai, et al.Reviews on impurity phase dynamics in contaminated insulating oil under multi-physical field conditions[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 266-282. [25] Kulkarni S V, Khaparde S A.Transformer engineering: design, technology, and diagnostics[M]. 2nd ed. Boca Raton, FL, USA: CRC Press, 2017. [26] 赵博, 张洪亮. Ansoft 12在工程电磁场中的应用[M]. 北京: 中国水利水电出版社, 2013. [27] 李冰, 王泽忠, 刘恪, 等. 特高压变压器直流偏磁对绕组电流的影响[J]. 电工技术学报, 2020, 35(7): 1422-1431. Li Bing, Wang Zezhong, Liu Ke, et al.Research on winding current of UHV transformer under DC-bias[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1422-1431. [28] Yan Chenguang, Zhou Xian, Xu Ya, et al.Experimental study on the gas bubble temperature around an arc under insulation oil[J]. IEEE Transactions on Power Delivery, 2021, 36(2): 1245-1248. [29] Yan Chenguang, Xu Ya, Zhang Peng, et al.Investigation of the gas bubble dynamics induced by an electric arc in insulation oil[J]. Plasma Science and Technology, 2022, 24(4): 044003. [30] Cassie A.Theorie nouvelle des arcs de rupture et de la rigidité des circuits[R]. Ohio, USA: CIGRE, 1939. [31] Mayr O.Beiträge zur theorie des statischen und des dynamischen lichtbogens[J]. Archiv Für Elektrotechnik, 1943, 37(12): 588-608. [32] Hochrainer A, Grütz A.Study of arcs in breakers with the help of a cybernetic model[R]. Paris, France: CIGRE, 1972. [33] Schavemaker P H, van der Slui L. An improved Mayr-type arc model based on current-zero measurements[J]. IEEE Transactions on Power Delivery, 2000, 15(2): 580-584. [34] 王钢, 徐子利, 梁远升, 等. 基于故障电弧方波曲线相似度的输电线路单端故障测距时域算法[J]. 电力系统保护与控制, 2012, 40(23): 109-113. Wang Gang, Xu Zili, Liang Yuansheng, et al.Single terminal time domain fault location method based on the similarity of square wave for arc grounding fault[J]. Power System Protection and Control, 2012, 40(23): 109-113. [35] 许晔, 郭谋发, 陈彬, 等. 配电网单相接地电弧建模及仿真分析研究[J]. 电力系统保护与控制, 2015, 43(7): 57-64. Xu Ye, Guo Moufa, Chen Bin, et al.Modeling and simulation analysis of arc in distribution network[J]. Power System Protection and Control, 2015, 43(7): 57-64. [36] Khakpour A, Franke S, Gortschakow S, et al.An improved arc model based on the arc diameter[J]. IEEE Transactions on Power Delivery, 2016, 31(3): 1335-1341. [37] 中国南方电网超高压输电公司, 华南理工大学电力学院. 高压直流输电系统继电保护原理与技术[M]. 北京: 中国电力出版社, 2013. [38] 郑涛, 王增平, 翁汉琍. 超/特高压变压器差动保护关键技术与新原理[M]. 北京: 科学出版社, 2017. [39] 翁汉琍, 郭祎达, 李昊威, 等. 涌流工况下换流变压器零序差动保护误动对策[J]. 电力系统自动化, 2020, 44(23): 143-149. Weng Hanli, Guo Yida, Li Haowei, et al.Countermeasures for mal-operation of zero-sequence differential protection of converter transformer under inrush current condition[J]. Automation of Electric Power Systems, 2020, 44(23): 143-149. |
|
|
|