[1] 习近平.在第七十五届联合国大会一般性辩论上的讲话[N].人民日报,2020-09-23(003).
Xi Jinping.Add at the general debate of the seventy-fifth United Nations General Assembly [N].People's Daily,2020-09-23(003).
[2] Ratnam K S, Palanisamy K, Yang Guangya.Future low-inertia power systems: requirements, issues, and solutions - A review[J]. Renewable and Sustainable Energy Reviews, 2020, 124: 109773.
[3] 李帅虎, 向丽珍, 向振宇, 等. 用于改善VSG频率响应的模型预测控制方法[J]. 高电压技术, 2021, 47(8): 2856-2864.
Li Shuaihu, Xiang Lizhen, Xiang Zhenyu, et al.MPC control method for improving VSG frequency response[J]. High Voltage Engineering, 2021, 47(8): 2856-2864.
[4] 李忠文, 吴龙, 程志平, 等. 光储系统参与微电网频率调节的模糊自适应滑模控制[J]. 高电压技术, 2022, 48(6): 2065-2076.
Li Zhongwen, Wu Long, Cheng Zhiping, et al.Fuzzy adaptive sliding mode control of photovoltaic and storage systems for providing frequency regulation of microgrid[J]. High Voltage Engineering, 2022, 48(6): 2065-2076.
[5] 滕云, 孙鹏, 张明理, 等. 基于农村新型产业结构的“能源-环境-经济”鲁棒优化模型[J]. 中国电机工程学报, 2022, 42(2): 614-631.
Teng Yun, Sun Peng, Zhang Mingli, et al.Robust optimization model of “energy-environment-economy” based on the new rural industrial structure[J]. Proceedings of the CSEE, 2022, 42(2): 614-631.
[6] 娄源媛, 蒋若蒙, 钱峰, 等. 考虑负荷特性的解列后受端电网频率控制策略[J]. 电网技术, 2019, 43(1): 213-220.
Lou Yuanyuan, Jiang Ruomeng, Qian Feng, et al.Frequency control strategy after receiving-end power grid splitting considering load characteristics[J]. Power System Technology, 2019, 43(1): 213-220.
[7] 黎静华, 骆怡辰, 杨舒惠, 等. 可再生能源电力不确定性预测方法综述[J]. 高电压技术, 2021, 47(4): 1144-1157.
Li Jinghua, Luo Yichen, Yang Shuhui, et al.Review of uncertainty forecasting methods for renewable energy power[J]. High Voltage Engineering, 2021, 47(4): 1144-1157.
[8] 文云峰, 杨伟峰, 林晓煌. 低惯量电力系统频率稳定分析与控制研究综述及展望[J]. 电力自动化设备, 2020, 40(9): 211-222.
Wen Yunfeng, Yang Weifeng, Lin Xiaohuang.Review and prospect of frequency stability analysis and control of low-inertia power systems[J]. Electric Power Automation Equipment, 2020, 40(9): 211-222.
[9] Syed M H, Guillo-Sansano E, Mehrizi-Sani A, et al.Load frequency control in variable inertia systems[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4904-4907.
[10] 邢鹏翔, 付立军, 王刚, 等. 改善微电网频率动态响应的虚拟同步发电机强化惯量控制方法[J]. 高电压技术, 2018, 44(7): 2346-2353.
Xing Pengxiang, Fu Lijun, Wang Gang, et al.Control strategy of virtual synchronous generator with enhanced inertia for improving dynamic frequency response of microgrid[J]. High Voltage Engineering, 2018, 44(7): 2346-2353.
[11] Sun Peng, Teng Yun, Chen Zhe.Robust coordinated optimization for multi-energy systems based on multiple thermal inertia numerical simulation and uncertainty analysis[J]. Applied Energy, 2021, 296: 116982.
[12] 金红洋, 滕云, 冷欧阳, 等. 基于源荷不确定性状态感知的无废城市多能源协调储能模型[J]. 电工技术学报, 2020, 35(13): 2830-2842.
Jin Hongyang, Teng Yun, Leng Ouyang, et al.Multi-energy coordinated energy storage model in zero-waste cities based on situation awareness of source and load uncertainty[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2830-2842.
[13] 李东东, 张佳乐, 徐波, 等. 考虑频率分布特性的新能源电力系统等效惯量评估[J]. 电网技术, 2020, 44(8): 2913-2921.
Li Dongdong, Zhang Jiale, Xu Bo, et al.Equivalent inertia assessment in renewable power system considering frequency distribution properties[J]. Power System Technology, 2020, 44(8): 2913-2921.
[14] 滕云, 吴磊, 冷欧阳, 等. 考虑垃圾处理与多源储能协调的多能源微网优化运行模型[J]. 电工技术学报, 2020, 35(19): 4120-4130.
Teng Yun, Wu Lei, Leng Ouyang, et al.Multi-energy microgrid optimization operation model considering waste disposal and multi-source coordinated energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4120-4130.
[15] 王晶晶, 廖思阳, 姚良忠, 等. 基于一致性算法的直流受端电网分布式调频资源协同频率控制[J]. 电网技术, 2022, 46(3): 888-900.
Wang Jingjing, Liao Siyang, Yao Liangzhong, et al.Coordinated frequency control strategy for DC receiving-end power grid with distributed frequency regulation resources using consensus algorithm[J]. Power System Technology, 2022, 46(3): 888-900.
[16] 边晓燕, 张菁娴, 丁炀, 等. 基于DFIG虚拟惯量的微电网双维自适应动态频率优化控制[J]. 高电压技术, 2020, 46(5): 1476-1485.
Bian Xiaoyan, Zhang Jingxian, Ding Yang, et al.Double layer adaptive dynamic frequency optimization control of microgrid based on DFIG virtual inertia[J]. High Voltage Engineering, 2020, 46(5): 1476-1485.
[17] 孙玉树, 杨敏, 师长立, 等. 储能的应用现状和发展趋势分析[J]. 高电压技术, 2020, 46(1): 80-89.
Sun Yushu, Yang Min, Shi Changli, et al.Analysis of application status and development trend of energy storage[J]. High Voltage Engineering, 2020, 46(1): 80-89.
[18] 张祥宇, 朱正振, 付媛. 风电并网系统的虚拟同步稳定分析与惯量优化控制[J]. 高电压技术, 2020, 46(8): 2922-2932.
Zhang Xiangyu, Zhu Zhengzhen, Fu Yuan.Virtual synchronous stability analysis and optimized inertia control for wind power grid-connected system[J]. High Voltage Engineering, 2020, 46(8): 2922-2932.
[19] 颜湘武, 王德胜, 杨琳琳, 等. 直驱风机惯量支撑与一次调频协调控制策略[J]. 电工技术学报, 2021, 36(15): 3282-3292.
Yan Xiangwu, Wang Desheng, Yang Linlin, et al.Coordinated control strategy of inertia support and primary frequency regulation of PMSG[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3282-3292.
[20] 赵冬梅, 王闯, 谢家康, 等. 考虑惯量中心频率偏移的自编码器暂态稳定评估[J]. 电网技术, 2022, 46(2): 662-670.
Zhao Dongmei, Wang Chuang, Xie Jiakang, et al.Transient stability assessment of auto encoder considering frequency shift of inertia center[J]. Power System Technology, 2022, 46(2): 662-670.
[21] 赵晋泉, 汤建军, 吴迪, 等. 直流馈入受端电网暂态电压与频率稳定紧急协调控制策略[J]. 电力系统自动化, 2020, 44(22): 45-53.
Zhao Jinquan, Tang Jianjun, Wu Di, et al.Emergency coordination control strategy for transient voltage and transient frequency stability in HVDC infeed receiving-end power grid[J]. Automation of Electric Power Systems, 2020, 44(22): 45-53.
[22] 孙鹏, 滕云, 回茜, 等. 考虑异质能流输运特性的多能源系统惯量极限优化[J]. 中国电机工程学报, 2022, 42(10): 3642-3656.
Sun Peng, Teng Yun, Hui Qian, et al.Inertia limit optimization of multi-energy system considering the transport characteristics of heterogeneous energy flow[J]. Proceedings of the CSEE, 2022, 42(10): 3642-3656.
[23] 李少林, 王伟胜, 张兴, 等. 基于频率响应区间划分的风电机组虚拟惯量模糊自适应控制[J]. 电网技术, 2021, 45(5): 1658-1665.
Li Shaolin, Wang Weisheng, Zhang Xing, et al.Fuzzy adaptive virtual inertia control strategy of wind turbines based on system frequency response interval division[J]. Power System Technology, 2021, 45(5): 1658-1665.
[24] 王博, 杨德友, 蔡国伟. 大规模风电并网条件下考虑动态频率约束的机组组合[J]. 电网技术, 2020, 44(7): 2513-2519.
Wang Bo, Yang Deyou, Cai Guowei.Dynamic frequency constraint unit commitment in large-scale WindPower grid connection[J]. Power System Technology, 2020, 44(7): 2513-2519.
[25] 周雷, 田蓓, 卓谷颖, 等. 考虑多能互补的多区域交直流系统频率稳定联合控制模型[J]. 可再生能源, 2021, 39(5): 681-686.
Zhou Lei, Tian Bei, Zhuo Guying, et al.Multi-zone AC/DC system frequency stability joint control model considering multi-energy complementation[J]. Renewable Energy Resources, 2021, 39(5): 681-686.
[26] 林恒先, 侯凯元, 陈磊, 等. 高比例风电电力系统考虑频率安全约束的机组组合[J]. 电网技术, 2021, 45(1): 1-13.
Lin Hengxian, Hou Kaiyuan, Chen Lei, et al.Unit commitment of power system with high proportion of wind power considering frequency safety constraints[J]. Power System Technology, 2021, 45(1): 1-13.
[27] Cheng Xueyang, Lee W J, Sahni M, et al.Dynamic equivalent model development to improve the operation efficiency of wind farm[J]. IEEE Transactions on Industry Applications, 2016, 52(4): 2759-2767.
[28] 胡石阳, 刘国荣. 基于虚拟同步机的新能源并网智能控制研究[J]. 电气技术, 2022, 23(10): 10-17.
Hu Shiyang, Liu Guorong.Research on intelligent control of grid connected new energy based on virtual synchronous machine[J]. Electrical Engineering, 2022, 23(10): 10-17. |