[1] 吴赋章, 杨军, 林洋佳, 等. 考虑用户有限理性的电动汽车时空行为特性[J]. 电工技术学报, 2020, 35(7): 1563-1574.
Wu Fuzhang, Yang Jun, Lin Yangjia, et al.Research on spatiotemporal behavior of electric vehicles considering the users’ bounded rationality[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1563-1574.
[2] 武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725.
Wu Longxing, Pang Hui, Jin Jiamin, et al.A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1703-1725.
[3] 黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766.
Huang Kai, Ding Heng, Guo Yongfang, et al.Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766.
[4] 肖迁, 穆云飞, 焦志鹏, 等. 基于改进LightGBM的电动汽车电池剩余使用寿命在线预测[J]. 电工技术学报, 2022, 37(17): 4517-4527.
Xiao Qian, Mu Yunfei, Jiao Zhipeng, et al.Improved LightGBM based remaining useful life prediction of lithium-ion battery under driving conditions[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4517-4527.
[5] 肖迁, 焦志鹏, 穆云飞, 等. 基于LightGBM的电动汽车行驶工况下电池剩余使用寿命预测[J]. 电工技术学报, 2021, 36(24): 5176-5185.
Xiao Qian, Jiao Zhipeng, Mu Yunfei, et al.LightGBM based remaining useful life prediction of electric vehicle lithium-ion battery under driving conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5176-5185.
[6] Yang Mengjie, Ye Yijun, Yang Aijun, et al.Comparative study on aging and thermal runaway of commercial LiFePO4/graphite battery undergoing slight overcharge cycling[J]. Journal of Energy Storage, 2022, 50: 104691.
[7] 薛明, 杨庆新, 章鹏程, 等. 无线电能传输技术应用研究现状与关键问题[J]. 电工技术学报, 2021, 36(8): 1547-1568.
Xue Ming, Yang Qingxin, Zhang Pengcheng, et al.Application status and key issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568.
[8] Yoshino A.Development of the lithium-ion battery and recent technological trends[M]//Pistoia. Lithium-Ion Batteries. Amsterdam: Elsevier, 2014: 1-20.
[9] Market.Us. Lithium Ion Battery Market is Slated to be Worth USD 307.8 Billion by2032[EB/OL]. (2023-02-28). https://www.globenewswire.com/en/news-release/2023/02/28/2617605/0/en/Lithium-Ion-Battery-Market-is-Slated-to-be-Worth-USD-307-8-Billion-by-2032-Market-Us.html.
[10] Jin Yang, Zheng Zhikun, Wei Donghui, et al.Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729.
[11] Feng Xuning, Ouyang Minggao, Liu Xiang, et al.Thermal runaway mechanism of lithium ion battery for electric vehicles: a review[J]. Energy Storage Materials, 2018, 10: 246-267.
[12] Wang Qingsong, Mao Binbin, Stoliarov S I, et al.A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131.
[13] Electric Power Research Institute. BESS Failure Event Database[DB/OL]. (2022-08-17)[2023-03-02]. https://storagewiki.epri.com/index.php/BESS_Failure_Event_Database.
[14] 电动观察. 2021电动汽车安全年度报告[EB/OL]. (2022-01-06)[2023-03-02]. https://baijiahao.baidu.com/s?id=1721164 341983283279&wfr=spider&for=pc.
[15] Feng Xuning, Ren Dongsheng, He Xiangming, et al.Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770.
[16] Liu Xiang, Ren Dongsheng, Hsu Hungjen, et al.Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2(10): 2047-2064.
[17] 牛志远, 姜欣, 谢镔, 等. 电动汽车过充燃爆事故模拟及安全防护研究[J]. 电工技术学报, 2022, 37(1): 36-47, 57.
Niu Zhiyuan, Jiang Xin, Xie Bin, et al.Study on simulation and safety protection of electric vehicle overcharge and explosion accident[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 36-47, 57.
[18] 庞辉, 郭龙, 武龙星, 等. 考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J]. 电工技术学报, 2021, 36(10): 2178-2189.
Pang Hui, Guo Long, Wu Longxing, et al.An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2178-2189.
[19] Duan Jian, Tang Xuan, Dai Haifeng, et al.Building safe lithium-ion batteries for electric vehicles: a review[J]. Electrochemical Energy Reviews, 2020, 3(1): 1-42.
[20] Liao Zhenghai, Zhang Shen, Li Kang, et al.A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries[J]. Journal of Power Sources, 2019, 436: 226879.
[21] Xia Bing, Mi C.A fault-tolerant voltage measurement method for series connected battery packs[J]. Journal of Power Sources, 2016, 308: 83-96.
[22] Xia Bing, Nguyen T, Yang Jufeng, et al.The improved interleaved voltage measurement method for series connected battery packs[J]. Journal of Power Sources, 2016, 334: 12-22.
[23] Xia Bing, Shang Yunlong, Nguyen T, et al.A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources, 2017, 337: 1-10.
[24] Grandjean T, Barai A, Hosseinzadeh E, et al.Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management[J]. Journal of Power Sources, 2017, 359: 215-225.
[25] Parhizi M, Ahmed M B, Jain A.Determination of the core temperature of a Li-ion cell during thermal runaway[J]. Journal of Power Sources, 2017, 370: 27-35.
[26] Raijmakers L H J, Danilov D L, van Lammeren J P M, et al. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2014, 247: 539-544.
[27] Raijmakers L H J, Danilov D L, van Lammeren J P M, et al. Non-zero intercept frequency: an accurate method to determine the integral temperature of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3168-3178.
[28] Srinivasan R, Demirev P A, Carkhuff B G.Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention[J]. Journal of Power Sources, 2018, 405: 30-36.
[29] Srinivasan R, Carkhuff B G, Butler M H, et al.Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells[J]. Electrochimica Acta, 2011, 56(17): 6198-6204.
[30] Lyu Nawei, Jin Yang, Xiong Rui, et al.Real-time overcharge warning and early thermal runaway prediction of Li-ion battery by online impedance measurement[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1929-1936.
[31] Raghavan A, Kiesel P, Sommer L W, et al.Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance[J]. Journal of Power Sources, 2017, 341: 466-473.
[32] Ganguli A, Saha B, Raghavan A, et al.Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation[J]. Journal of Power Sources, 2017, 341: 474-482.
[33] Fortier A, Tsao M, Williard N D, et al.Preliminary study on integration of fiber optic Bragg grating sensors in Li-ion batteries and in situ strain and temperature monitoring of battery cells[J]. Energies, 2017, 10(7): 838.
[34] Kennedy R W, Marr K C, Ezekoye O A.Gas release rates and properties from Lithium Cobalt Oxide lithium ion battery arrays[J]. Journal of Power Sources, 2021, 487: 229388.
[35] Diaz F, Wang Y, Weyhe R, et al.Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries[J]. Waste Management, 2019, 84: 102-111.
[36] Larsson F, Andersson P, Blomqvist P, et al.Toxic fluoride gas emissions from lithium-ion battery fires[J]. Scientific Reports, 2017, 7(1): 10018.
[37] Fernandes Y, Bry A, de Persis S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery[J]. Journal of Power Sources, 2018, 389: 106-119.
[38] Kong Weihe, Li Hong, Huang Xuejie, et al.Gas evolution behaviors for several cathode materials in lithium-ion batteries[J]. Journal of Power Sources, 2005, 142(1-2): 285-291.
[39] Kumai K, Miyashiro H, Kobayashi Y, et al. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. Journal of Power Sources, 1999, 81-82: 715-719.
[40] Zhang Yajun, Wang Hewu, Li Weifeng, et al.Quantitative analysis of eruption process of abused prismatic Ni-rich automotive batteries based on in-chamber pressure[J]. Journal of Energy Storage, 2020, 31: 101617.
[41] Chen Shichen, Wang Zhirong, Wang Jinghong, et al.Lower explosion limit of the vented gases from Li-ion batteries thermal runaway in high temperature condition[J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 103992.
[42] Sturk D, Rosell L, Blomqvist P, et al.Analysis of Li-ion battery gases vented in an inert atmosphere thermal test chamber[J]. Batteries, 2019, 5(3): 61.
[43] Cummings S, Swartz N.Off-gas monitoring for lithium ion battery health and safety[R]//Wright Patterson AFB: Power Sources Committee Meeting, 2017.
[44] 廖正海, 张国强. 锂离子电池热失控早期预警研究进展[J]. 电工电能新技术, 2019, 38(10): 61-66.
Liao Zhenghai, Zhang Guoqiang.Progress on early warning technology for thermal runaway of lithium-ion battery[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(10): 61-66.
[45] Wang Qingsong, Jiang Lihua, Yu Yan, et al.Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114.
[46] Feng Xuning, Zheng Siqi, Ren Dongsheng, et al.Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64.
[47] Aurbach D, Zaban A, Gofer Y, et al.Recent studies of the lithium-liquid electrolyte interface Electrochemical, morphological and spectral studies of a few important systems[J]. Journal of Power Sources, 1995, 54(1): 76-84.
[48] Zhao Liwei, Watanabe I, Doi T, et al. TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries[J]. Journal of Power Sources, 2006, 161(2): 1275-1280.
[49] 陈玉红, 唐致远, 卢星河, 等. 锂离子电池爆炸机理研究[J]. 化学进展, 2006, 18(6): 823-831.
Chen Yuhong, Tang Zhiyuan, Lu Xinghe, et al.Research of explosion mechanism of lithium-ion battery[J]. Progress in Chemistry, 2006, 18(6): 823-831.
[50] Yang Hui, Bang H, Amine K, et al.Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway[J]. Journal of the Electrochemical Society, 2005, 152(1): A73.
[51] Du Pasquier A, Disma F, Bowmer T, et al.Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145(2): 472-477.
[52] Sloop S E, Kerr J B, Kinoshita K. The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge[J]. Journal of Power Sources, 2003, 119-121: 330-337.
[53] Hong J S, Maleki H, Al Hallaj S, et al.Electrochemical-calorimetric studies of lithium-ion cells[J]. Journal of the Electrochemical Society, 1998, 145(5): 1489-1501.
[54] Maleki H, Deng Guoping, Anani A, et al.Thermal stability studies of Li-ion cells and components[J]. Journal of the Electrochemical Society, 1999, 146(9): 3224-3229.
[55] Wang Qingsong, Sun Jinhua, Yao Xiaolin, et al.Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2006, 153(2): A329.
[56] Gachot G, Grugeon S, Eshetu G G, et al.Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis[J]. Electrochimica Acta, 2012, 83: 402-409.
[57] Golubkov A W, Scheikl S, Planteu R, et al.Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes - impact of state of charge and overcharge[J]. RSC Advances, 2015, 5(70): 57171-57186.
[58] Lyu Peizhao, Liu Xinjian, Qu Jie, et al.Recent advances of thermal safety of lithium ion battery for energy storage[J]. Energy Storage Materials, 2020, 31: 195-220.
[59] Doughty D H, Roth E P.A general discussion of Li ion battery safety[J]. Electrochemical Society Interface, 2012, 21(2): 37-44.
[60] Biensan P, Simon B, Pérès J P, et al. On safety of lithium-ion cells[J]. Journal of Power Sources, 1999, 81-82: 906-912.
[61] Arai H, Tsuda M, Saito K, et al.Thermal reactions between delithiated lithium nickelate and electrolyte solutions[J]. Journal of the Electrochemical Society, 2002, 149(4): A401-A406.
[62] MacNeil D D, Dahn J R. The reaction of charged cathodes with nonaqueous solvents and electrolytes: Ⅰ. Li0.5CoO2[J]. Journal of the Electrochemical Society, 2001, 148(11): A1205-A1210.
[63] MacNeil D D, Dahn J R. Test of reaction kinetics using both differential scanning and accelerating rate calorimetries as applied to the reaction of LixCoO2 in non-aqueous electrolyte[J]. The Journal of Physical Chemistry A, 2001, 105(18): 4430-4439.
[64] Wang Haiyan, Tang Aidong, Huang Kelong.Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics[J]. Chinese Journal of Chemistry, 2011, 29(8): 1583-1588.
[65] Bak S M, Hu Enyuan, Zhou Yongning, et al.Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22594-22601.
[66] Lu Zhonghua, MacNeil D D, Dahn J R. Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2001, 4(12): A200-A203.
[67] MacNeil D D, Lu Z, Dahn J R. Structure and electrochemistry of Li[NixCo1-2xMnx]O2 (0≤x≤1/2)[J]. Journal of the Electrochemical Society, 2002, 149(10): A1332-A1336.
[68] MacNeil D D, Dahn J R. The reaction of charged cathodes with nonaqueous solvents and electrolytes: Ⅱ. LiMn2O4 charged to 4.2 V[J]. Journal of the Electrochemical Society, 2001, 148(11): A1211-A1215.
[69] Zhang Z, Fouchard D, Rea J R.Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells[J]. Journal of Power Sources, 1998, 70(1): 16-20.
[70] Jiang J, Dahn J R.ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes[J]. Electrochemistry Communications, 2004, 6(1): 39-43.
[71] Martha S K, Haik O, Zinigrad E, et al.On the thermal stability of olivine cathode materials for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(10): A1115.
[72] Li Zhihua, Zhang Duanming, Yang Fengxia.Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material[J]. Journal of Materials Science, 2009, 44(10): 2435-2443.
[73] Röder P, Baba N, Friedrich K A, et al.Impact of delithiated Li0FePO4 on the decomposition of LiPF6-based electrolyte studied by accelerating rate calorimetry[J]. Journal of Power Sources, 2013, 236: 151-157.
[74] Kim J, Park K Y, Park I, et al.Thermal stability of Fe-Mn binary olivine cathodes for Li rechargeable batteries[J]. Journal of Materials Chemistry, 2012, 22(24): 11964-11970.
[75] Kalhoff J, Eshetu G G, Bresser D, et al.Safer electrolytes for lithium-ion batteries: state of the art and perspectives[J]. ChemSusChem, 2015, 8(13): 2154-2175.
[76] Gnanaraj J S, Zinigrad E, Asraf L, et al.A detailed investigation of the thermal reactions of LiPF6 solution in organic carbonates using ARC and DSC[J]. Journal of the Electrochemical Society, 2003, 150(11): A1533-A1537.
[77] Zinigrad E, Larush-Asraf L, Gnanaraj J S, et al.Calorimetric studies of the thermal stability of electrolyte solutions based on alkyl carbonates and the effect of the contact with lithium[J]. Journal of Power Sources, 2005, 146(1-2): 176-179.
[78] Park Y U, Seo D H, Kim B, et al.Tailoring a fluorophosphate as a novel 4 V cathode for lithium-ion batteries[J]. Scientific Reports, 2012, 2(1): 1-7.
[79] Ortiz G F, López M C, Li Yixiao, et al.Enhancing the energy density of safer Li-ion batteries by combining high-voltage lithium cobalt fluorophosphate cathodes and nanostructured titania anodes[J]. Scientific Reports, 2016, 6(1): 1-8.
[80] Lebedeva N P, Boon-Brett L.Considerations on the chemical toxicity of contemporary Li-ion battery electrolytes and their components[J]. Journal of the Electrochemical Society, 2016, 163(6): A821-A830.
[81] Ng B, Coman P T, Faegh E, et al.Low-temperature lithium plating/corrosion hazard in lithium-ion batteries: electrode rippling, variable states of charge, and thermal and nonthermal runaway[J]. ACS Applied Energy Materials, 2020, 3(4): 3653-3664.
[82] Nakajima T, Groult H.Fluorinated materials for energy conversion[M]. Amsterdam: Elsevier, 2005.
[83] Terborg L, Weber S, Blaske F, et al.Investigation of thermal aging and hydrolysis mechanisms incommercial lithium ion battery electrolyte[J]. Journal of Power Sources, 2013, 242: 832-837.
[84] Gachot G, Ribière P, Mathiron D, et al.Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study[J]. Analytical Chemistry, 2011, 83(2): 478-485.
[85] Golubkov A W, Fuchs D, Wagner J, et al.Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642.
[86] Roth E P, Orendorff C J.How electrolytes influence battery safety[J]. The Electrochemical Society Interface, 2012, 21(2): 45-49.
[87] Dahn J R, Fuller E W, Obrovac M, et al.Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells[J]. Solid State Ionics, 1994, 69(3-4): 265-270.
[88] Li J, Zhang Z R, Guo X J, et al.The studies on structural and thermal properties of delithiated LixNi1/3Co1/3Mn1/3O2 (0<x≤1) as a cathode material in lithium ion batteries[J]. Solid State Ionics, 2006, 177(17/18): 1509-1516.
[89] Yang Hui, Shen Xiaodong.Dynamic TGA-FTIR studies on the thermal stability of lithium/graphite with electrolyte in lithium-ion cell[J]. Journal of Power Sources, 2007, 167(2): 515-519.
[90] Kawamura T, Kimura A, Egashira M, et al.Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells[J]. Journal of Power Sources, 2002, 104(2): 260-264.
[91] Wang Qingsong, Sun Jinhua, Yao Xiaolin, et al.Thermal stability of LiPF6/EC+DEC electrolyte with charged electrodes for lithium ion batteries[J]. Thermochimica Acta, 2005, 437(1-2): 12-16.
[92] Gnanaraj J S, Zinigrad E, Asraf L, et al. The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions[J]. Journal of Power Sources, 2003, 119-121: 794-798.
[93] Moshkovich M, Cojocaru M, Gottlieb H E, et al.The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS[J]. Journal of Electroanalytical Chemistry, 2001, 497(1-2): 84-96.
[94] Haik O, Ganin S, Gershinsky G, et al.On the thermal behavior of lithium intercalated graphites[J]. Journal of the Electrochemical Society, 2011, 158(8): A913.
[95] Spotnitz R, Franklin J.Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100.
[96] Roth E P, Doughty D H, Franklin J.DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders[J]. Journal of Power Sources, 2004, 134(2): 222-234.
[97] Yang Hui, Zhuang G V, Ross P N.Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6[J]. Journal of Power Sources, 2006, 161(1): 573-579.
[98] Larsson F, Andersson P, Blomqvist P, et al.Characteristics of lithium-ion batteries during fire tests[J]. Journal of Power Sources, 2014, 271: 414-420.
[99] Ribière P, Grugeon S, Morcrette M, et al.Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry[J]. Energy & Environmental Science, 2012, 5(1): 5271-5280.
[100] Larsson F, Bertilsson S, Furlani M, et al.Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing[J]. Journal of Power Sources, 2018, 373: 220-231.
[101] Fu Yangyang, Lu Song, Li Kaiyuan, et al.An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter[J]. Journal of Power Sources, 2015, 273: 216-222.
[102] Shin J S, Han C H, Jung U H, et al.Effect of Li2CO3 additive on gas generation in lithium-ion batteries[J]. Journal of Power Sources, 2002, 109(1): 47-52.
[103] Li Wen, Li Xing, Chen Mianzhong, et al.AlF3 modification to suppress the gas generation of Li4Ti5O12 anode battery[J]. Electrochimica Acta, 2014, 139: 104-110.
[104] Wu Kai, Yang Jun, Liu Yang, et al.Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cells at elevated temperature[J]. Journal of Power Sources, 2013, 237: 285-290.
[105] Koch S, Birke K, Kuhn R.Fast thermal runaway detection for lithium-ion cells in large scale traction batteries[J]. Batteries, 2018, 4(2): 16.
[106] Essl C, Golubkov A W, Fuchs A.Comparing different thermal runaway triggers for two automotive lithium-ion battery cell types[J]. Journal of the Electrochemical Society, 2020, 167(13): 130542.
[107] Larsson F, Mellander B E.Abuse by external heating, overcharge and short circuiting of commercial lithium-ion battery cells[J]. Journal of the Electrochemical Society, 2014, 161(10): A1611-A1617.
[108] Chen Mingyi, Zhou Dechuang, Chen Xiao, et al.Investigation on the thermal hazards of 18650 lithium ion batteries by fire calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2015, 122(2): 755-763.
[109] Said A O, Lee C, Stoliarov S I.Experimental investigation of cascading failure in 18650 lithium ion cell arrays: impact of cathode chemistry[J]. Journal of Power Sources, 2020, 446: 227347.
[110] Andersson P, Blomqvist P, Lorén A, et al.Using Fourier transform infrared spectroscopy to determine toxic gases in fires with lithium-ion batteries[J]. Fire and Materials, 2016, 40(8): 999-1015.
[111] Koch S, Fill A, Birke K P.Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway[J]. Journal of Power Sources, 2018, 398: 106-112.
[112] Larsson F.Assessment of safety characteristics for Li-ion battery cells by abuse testing[D]. Gothenburg: Chalmers Tekniska Hogskola, 2014.
[113] Pfrang A, Kriston A, Ruiz V, et al.Safety of rechargeable energy storage systems with a focus on Li-ion technology[M]//Rodriguez-Martinez L M, Omar N. Emerging Nanotechnologies in Rechargeable Energy Storage Systems. Amsterdam: Elsevier, 2017: 253-290.
[114] Huang Lüwei, Zhang Zhaosheng, Wang Zhenpo, et al.Thermal runaway behavior during overcharge for large-format lithium-ion batteries with different packaging patterns[J]. Journal of Energy Storage, 2019, 25: 100811.
[115] Lammer M, Königseder A, Hacker V.Holistic methodology for characterisation of the thermally induced failure of commercially available 18650 lithium ion cells[J]. RSC Advances, 2017, 7(39): 24425-24429.
[116] 潘海鸿, 张沫, 王惠民, 等. 基于多影响因素建立锂离子电池充电内阻的动态模型[J]. 电工技术学报, 2021, 36(10): 2199-2206.
Pan Haihong, Zhang Mo, Wang Huimin, et al.Establishing a dynamic model of lithium-ion battery charging internal resistance based on multiple factors[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2199-2206.
[117] 杨胜杰, 罗冰洋, 王菁, 等. 基于容量增量曲线峰值区间特征参数的锂离子电池健康状态估算[J]. 电工技术学报, 2021, 36(11): 2277-2287.
Yang Shengjie, Luo Bingyang, Wang Jing, et al.State of health estimation for lithium-ion batteries based on peak region feature parameters of incremental capacity curve[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2277-2287.
[118] Liao Zhenghai, Zhang Shen, Li Kang, et al.Hazard analysis of thermally abused lithium-ion batteries at different state of charges[J]. Journal of Energy Storage, 2020, 27: 101065.
[119] Somandepalli V, Marr K, Horn Q.Quantification of combustion hazards of thermal runaway failures in lithium-ion batteries[J]. SAE International Journal of Alternative Powertrains, 2014, 3(1): 98-104.
[120] Jiang Fengwei, Liu Kai, Wang Zhirong, et al.Theoretical analysis of lithium-ion battery failure characteristics under different states of charge[J]. Fire and Materials, 2018, 42(6): 680-686.
[121] Stenzel Y P, Börner M, Preibisch Y, et al.Thermal profiling of lithium ion battery electrodes at different states of charge and aging conditions[J]. Journal of Power Sources, 2019, 433: 226709.
[122] Essl C, Golubkov A W, Gasser E, et al.Comprehensive hazard analysis of failing automotive lithium-ion batteries in overtemperature experiments[J]. Batteries, 2020, 6(2): 30.
[123] Zhong Guobin, Mao Binbin, Wang Chao, et al.Thermal runaway and fire behavior investigation of lithium ion batteries using modified cone calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(5): 2879-2889.
[124] Zhang Qingsong, Niu Jianghao, Zhao Ziheng, et al.Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states[J]. Journal of Energy Storage, 2022, 45: 103759.
[125] Sun Jie, Li Jigang, Zhou Tian, et al.Toxicity, a serious concern of thermal runaway from commercial Li-ion battery[J]. Nano Energy, 2016, 27: 313-319.
[126] Lecocq A, Eshetu G G, Grugeon S, et al.Scenario-based prediction of Li-ion batteries fire-induced toxicity[J]. Journal of Power Sources, 2016, 316: 197-206.
[127] Scheirs J, Kaminsky W.Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels[M]. Chichester: John Wiley & Sons, 2006.
[128] Wagner M W, Liebenow C, Besenhard J O.Effect of polysulfide-containing electrolyte on the film formation of the negative electrode[J]. Journal of Power Sources, 1997, 68(2): 328-332.
[129] Wrodnigg G H, Besenhard J O, Winter M. Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes?[J]. Journal of Power Sources, 2001, 97-98: 592-594.
[130] Lee J H, Paik U, Hackley V A, et al.Effect of carboxymethyl cellulose on aqueous processing of natural graphite negative electrodes and their electrochemical performance for lithium batteries[J]. Journal of the Electrochemical Society, 2005, 152(9): A1763-A1769.
[131] Ren Dongsheng, Hsu Hengjen, Li Ruihe, et al.A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries[J]. eTransportation, 2019, 2: 100034.
[132] 孙丙香, 任鹏博, 陈育哲, 等. 锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测[J]. 电工技术学报, 2021, 36(3): 666-674.
Sun Bingxiang, Ren Pengbo, Chen Yuzhe, et al.Analysis of influencing factors of degradation under different interval stress and prediction of aging trend in any interval for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 666-674.
[133] 马泽宇, 姜久春, 张维戈, 等. 锂离子动力电池热老化的路径依赖性研究[J]. 电工技术学报, 2014, 29(5): 221-227.
Ma Zeyu, Jiang Jiuchun, Zhang Weige, et al.Research on path dependence of large format LiMn2O4 battery degradation in thermal aging[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 221-227.
[134] Roth E P, Doughty D H.Thermal abuse performance of high-power 18650 Li-ion cells[J]. Journal of Power Sources, 2004, 128(2): 308-318.
[135] Röder P, Stiaszny B, Ziegler J C, et al.The impact of calendar aging on the thermal stability of a LiMn2O4-Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell[J]. Journal of Power Sources, 2014, 268: 315-325.
[136] Li Jia, Zhang Jian, Zhang Xigui, et al.Study of the storage performance of a Li-ion cell at elevated temperature[J]. Electrochimica Acta, 2010, 55(3): 927-934.
[137] Lin Xinrong, Salari M, Arava L M R, et al. High temperature electrical energy storage: advances, challenges, and frontiers[J]. Chemical Society Reviews, 2016, 45(21): 5848-5887.
[138] 贺狄龙, 马冬梅, 段雪琴, 等. 存储条件对磷酸铁锂锂离子电池性能的影响[J]. 电池, 2014, 44(4): 226-228.
He Dilong, Ma Dongmei, Duan Xueqin, et al.Effects of storage condition on the performance of lithium iron phosphate Li-ion battery[J]. Battery Bimonthly, 2014, 44(4): 226-228.
[139] Wu M S, Chiang P C J, Lin J C, et al. Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests—short-circuit tests[J]. Electrochimica Acta, 2004, 49(11): 1803-1812.
[140] Fleischhammer M, Waldmann T, Bisle G, et al.Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries[J]. Journal of Power Sources, 2015, 274: 432-439.
[141] Friesen A, Horsthemke F, Mönnighoff X, et al.Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis[J]. Journal of Power Sources, 2016, 334: 1-11.
[142] Jeevarajan J.Safety of commercial lithium-ion cells and batteries[M]//Pistoia G. Lithium-Ion Batteries. Amsterdam: Elsevier, 2014: 387-407.
[143] Fathi R, Burns J C, Stevens D A, et al.Ultra high-precision studies of degradation mechanisms in aged LiCoO2/graphite Li-ion cells[J]. Journal of the Electrochemical Society, 2014, 161(10): A1572-A1579.
[144] Zhang Jianbo, Su Laisuo, Li Zhe, et al.The evolution of lithium-ion cell thermal safety with aging examined in a battery testing calorimeter[J]. Batteries, 2016, 2(2): 12.
[145] Essl C, Golubkov A W, Fuchs A.Influence of aging on the failing behavior of automotive lithium-ion batteries[J]. Batteries, 2021, 7(2): 23.
[146] Abd-El-Latif A A, Sichler P, Kasper M, et al. Insights into thermal runaway of Li-ion cells by accelerating rate calorimetry coupled with external sensors and online gas analysis[J]. Batteries & Supercaps, 2021, 4(7): 1135-1144.
[147] Juarez-Robles D, Azam S, Jeevarajan J A, et al.Degradation-safety analytics in lithium-ion cells and modules part Ⅱ. Overcharge and external short circuit scenarios[J]. Journal of the Electrochemical Society, 2021, 168(5): 050535.
[148] Coman P T, Rayman S, White R E.A lumped model of venting during thermal runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell[J]. Journal of Power Sources, 2016, 307: 56-62.
[149] Coman P T, Mátéfi-Tempfli S, Veje C T, et al.Modeling vaporization, gas generation and venting in Li-ion battery cells with a dimethyl carbonate electrolyte[J]. Journal of the Electrochemical Society, 2017, 164(9): A1858-A1865.
[150] Kim H K, Yang D C, Jang I S, et al.Effects of pretreatment of LM-Ni3.9Co0.6Mn0.3Al0.2 alloy powders in a KOH/NaBH4 solution on the electrode characteristics and inner pressure of nickel-metal-hydride secondary batteries[J]. International Journal of Hydrogen Energy, 2009, 34(23): 9570-9575.
[151] Lu T Y, Chiang C C, Wu S H, et al. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1083-1088.
[152] Jhu C Y, Wang Y W, Shu C M, et al. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter[J]. Journal of Hazardous Materials, 2011, 192(1): 99-107.
[153] Jhu C Y, Wang Y W, Wen C Y, et al. Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology[J]. Applied Energy, 2012, 100: 127-131.
[154] Zhao Chunpeng, Sun Jinhua, Wang Qingsong. Thermal runaway hazards investigation on 18650 lithium-ion battery using extended volume accelerating rate calorimeter[J]. Journal of Energy Storage, 2020, 28: 101232.
[155] Zhao Chunpeng, Wang Tinghua, Huang Zheng, et al. Experimental study on thermal runaway of fully charged and overcharged lithium-ion batteries under adiabatic and side-heating test[J]. Journal of Energy Storage, 2021, 38: 102519. [156] Dubaniewicz T H, Barone T L, Brown C B, et al. Comparison of thermal runaway pressures within sealed enclosures for nickel manganese cobalt and iron phosphate cathode lithium-ion cells[J]. Journal of Loss Prevention in the Process Industries, 2022, 76: 104739.
[157] Chen W C, Wang Y W, Shu C M. Adiabatic calorimetry test of the reaction kinetics and self-heating model for 18650 Li-ion cells in various states of charge[J]. Journal of Power Sources, 2016, 318: 200-209.
[158] Lei Boxia, Zhao Wenjiao, Ziebert C, et al. Experimental analysis of thermal runaway in 18650 cylindrical Li-ion cells using an accelerating rate calorimeter[J]. Batteries, 2017, 3(4): 14.
[159] Qin Peng, Sun Jinhua, Wang Qingsong. A new method to explore thermal and venting behavior of lithium-ion battery thermal runaway[J]. Journal of Power Sources, 2021, 486: 229357.
[160] Ostanek J K, Li Weisi, Mukherjee P P, et al. Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model[J]. Applied Energy, 2020, 268: 114972.
[161] Kim J, Mallarapu A, Finegan D P, et al. Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway[J]. Journal of Power Sources, 2021, 489: 229496.
[162] Bugryniec P J, Davidson D J N, Brown D S F. Advanced abuse modelling of Li-ion cells-a novel description of cell pressurisation and simmering reactions[J]. Journal of Power Sources, 2020, 474: 228396.
[163] Kong Depeng, Wang Gongquan, Ping Ping, et al. A coupled conjugate heat transfer and CFD model for the thermal runaway evolution and jet fire of 18650 lithium-ion battery under thermal abuse[J]. eTransportation, 2022, 12: 100157.
[164] Dubaniewicz T H Jr, DuCarme J P. Are lithium ion cells intrinsically safe?[J]. IEEE Transactions on Industry Applications, 2013, 49(6): 2451-2460.
[165] Dubaniewicz T H, Zlochower I, Barone T, et al. Thermal runaway pressures of iron phosphate lithium-ion cells as a function of free space within sealed enclosures[J]. Mining, Metallurgy & Exploration, 2021, 38(1): 539-547.
[166] Wen C Y, Jhu C Y, Wang Y W, et al. Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2[J]. Journal of Thermal Analysis and Calorimetry, 2012, 109(3): 1297-1302.
[167] Wang Congjie, Zhu Yanli, Gao Fei, et al. Thermal runaway behavior and features of LiFePO4/graphite aged batteries under overcharge[J]. International Journal of Energy Research, 2020, 44(7): 5477-5487.
[168] Duh Y S, Theng J H, Chen C C, et al. Comparative study on thermal runaway of commercial 14500, 18650 and 26650 LiFePO4 batteries used in electric vehicles[J]. Journal of Energy Storage, 2020, 31: 101580.
[169] Hatchard T D, MacNeil D D, Basu A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the Electrochemical Society, 2001, 148(7): A755.
[170] Li Weifeng, Wang Hewu, Zhang Yajun, et al. Flammability characteristics of the battery vent gas: a case of NCA and LFP lithium-ion batteries during external heating abuse[J]. Journal of Energy Storage, 2019, 24: 100775.
[171] Zhang Yajun, Wang Hewu, Li Weifeng, et al. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries[J]. eTransportation, 2019, 2: 100031.
[172] 王贺武, 张亚军, 李成, 等. 锂离子动力电池中等荷电状态下热失控产物喷发过程[J]. 储能科学与技术, 2019, 8(6): 1076-1081. Wang Hewu, Zhang Yajun, Li Cheng, et al. Venting process of lithium-ion power battery during thermal runaway under medium state of charge[J]. Energy Storage Science and Technology, 2019, 8(6): 1076-1081.
[173] 平平. 锂离子电池热失控与火灾危险性分析及高安全性电池体系研究[D]. 合肥: 中国科学技术大学, 2014.
[174] Mier F A, Hargather M J, Ferreira S R. Experimental quantification of vent mechanism flow parameters in 18650 format lithium ion batteries[J]. Journal of Fluids Engineering, 2019, 141(6): 061403.
[175] Mier F A, Hill S M M, Lamb J, et al. Non-invasive internal pressure measurement of 18650 format lithium ion batteries during thermal runaway[J]. Journal of Energy Storage, 2022, 51: 104322.
[176] Jhu C Y, Wang Y W, Wen C Y, et al. Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries[J]. Journal of Thermal Analysis and Calorimetry, 2011, 106(1): 159-163.
[177] Mao Binbin, Huang Peifeng, Chen Haodong, et al. Self-heating reaction and thermal runaway criticality of the lithium ion battery[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119178.
[178] Mao Binbin, Zhao Chunpeng, Chen Haodong, et al. Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery[J]. Applied Energy, 2021, 281: 116054.
[179] Mishra D, Shah K, Jain A. Investigation of the impact of flow of vented gas on propagation of thermal runaway in a Li-ion battery pack[J]. Journal of the Electrochemical Society, 2021, 168(6): 060555.
[180] Lecocq A, Bertana M, Truchot B, et al. Comparison of the fire consequences of an electric vehicle and an internal combustion engine vehicle[C]//Conference Proceedings of Fires in Vehicles, Chicago, USA, 2012: 183-194.
[181] Yuan Liming, Dubaniewicz T, Zlochower I, et al. Experimental study on thermal runaway and vented gases of lithium-ion cells[J]. Process Safety and Environmental Protection, 2020, 144: 186-192.
[182] 黄峥, 秦鹏, 石晗, 等. 过热条件下86 Ah磷酸铁锂电池热失控行为研究[J]. 高电压技术, 2022, 48(3): 1185-1191. Huang Zheng, Qin Peng, Shi Han, et al. Study on thermal runaway behavior of 86 Ah lithium iron phosphate battery under overheat condition[J]. High Voltage Engineering, 2022, 48(3): 1185-1191.
[183] Galushkin N E, Yazvinskaya N N, Galushkin D N. Mechanism of thermal runaway in lithium-ion cells[J]. Journal of the Electrochemical Society, 2018, 165(7): A1303-A1308.
[184] Wenger M, Waller R, Lorentz V R H, et al. Investigation of gas sensing in large lithium-ion battery systems for early fault detection and safety improvement[C]//IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 2014: 5654-5659.
[185] Cummings S R, Swartz S L, Frank N B, et al. Systems and methods for monitoring for a gas analyte: US20180003685[P]. 2018-01-04.
[186] 杨启帆, 马宏忠, 刘宝稳, 等. 锂离子电池气体故障特性分析及诊断方法[J]. 高电压技术, 2021, 47(9): 3315-3330. Yang Qifan, Ma Hongzhong, Liu Baowen, et al. Gas fault characteristics analysis and diagnosis method of lithium-ion battery[J]. High Voltage Engineering, 2021, 47(9): 3315-3330.
[187] Lu Yang, Zhang Shiqi, Dai Shilei, et al. Ultrasensitive detection of electrolyte leakage from lithium-ion batteries by ionically conductive metal-organic frameworks[J]. Matter, 2020, 3(3): 904-919.
[188] Cai Ting, Stefanopoulou A G, Siegel J B. Early detection for Li-ion batteries thermal runaway based on gas sensing[J]. ECS Transactions, 2019, 89(1): 85-97.
[189] 王志荣, 杨赟, 佟轩, 等. 基于气体监测的锂离子电池组热失控自动报警器及其监测方法: CN108008083A[P]. 2018-05-08.
[190] Raghavan A, Kiesel P, Lochbaum A, et al. Battery management based on internal optical sensing: US009553465B2[P]. 2017-01-24.
[191] Hill D, Gully B, Agarwal A, et al. Detection of off gassing from Li-ion batteries[C]//2013 IEEE Energytech, Cleveland, OH, USA, 2013: 1-7.
[192] 王铭民, 孙磊, 郭鹏宇, 等. 基于气体在线监测的磷酸铁锂储能电池模组过充热失控特性[J]. 高电压技术, 2021, 47(1): 279-286. Wang Mingmin, Sun Lei, Guo Pengyu, et al. Overcharge and thermal runaway characteristics of lithium iron phosphate energy storage battery modules based on gas online monitoring[J]. High Voltage Engineering, 2021, 47(1): 279-286.
[193] 邓孝元. 电动汽车三元锂电池安全监测系统研究[D]. 西安: 长安大学, 2020.
[194] 王春力, 贡丽妙, 亢平, 等. 锂离子电池储能电站早期预警系统研究[J]. 储能科学与技术, 2018, 7(6): 1152-1158. Wang Chunli, Gong Limiao, Kang Ping, et al. Research on early warning system of lithium ion battery energy storage power station[J]. Energy Storage Science and Technology, 2018, 7(6): 1152-1158.
[195] Wang Qian, Zhang Jian, Liu Wei, et al. Quantitative investigation of the gassing behavior in cylindrical Li4Ti5O12 batteries[J]. Journal of Power Sources, 2017, 343: 564-570. |