|
|
Probabilistic Available Transfer Capability Assessment in Power System Considering Conditional Value-at-Risk and Correlated Wind Power |
Li Xue1, Li Jiaqi1,2, Zhang Rufeng1, Li Xiaojing2, Wang Mingxuan2 |
1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China; 2. State Grid Jilin Electric Power Company Changchun 130021 China |
|
|
Abstract To consider the impact of wind power output forecasting errors on the assessment of available transfer capability (ATC), this paper proposes a probabilistic ATC assessment method of power system considering wind power correlation and conditional value-at-risk (CVaR). First of all, the correlation coefficient between wind farms is calculated through the historical wind power output data, and the correlation coefficient matrix among wind farms is obtained. Then, the probability distribution and Copula function of wind farm output prediction are used to construct a probability model of wind power output prediction error considering spatial correlation. According to the wind power output forecast error data and wind farm output prediction value that meet the correlation of actual wind farm output, the output prediction of wind farm is corrected, and then the revised wind power output forecast is used as the input for calculating interregional ATC. After that, this paper proposes a bi-level optimal model considering the correlation of wind power output and CVaR for probabilistic ATC assessment. The lower level model aims to minimize the generation cost and risk under the base state. The upper level model aims at maximizing inter-regional ATC by taking power output under base state and extreme state as the interaction information between the upper and lower level models. On this basis, the Karush-Kuhn-Tucker (KKT) optimal conditions are used and the bi-level model is converted into a mathematical program with equilibrium constraints (MPEC) model. The MPEC model is further transformed into a mixed integer second-order cone programming form, and then the probabilistic ATC can be solved. Finally, the PJM-5 bus test system and Jilin Western Power Grid are used to analyze the example. In the PJM-5 bus test system, when the confidence level is taken by 90%, as the correlation coefficient increases from 0.5 to 0.9, the correlation of wind farm output gradually increases, and the inter-regional probability ATC expectation first increases and then decreases; when the confidence level is taken at 70%, the inter-regional probability ATC expectation gradually decreases with the increase of the correlation coefficient, and the wind power prediction error scenarios under different correlation coefficients are different, resulting in different output of each generator set in the ground state, which in turn affects the probability ATC expectation. In the actual system of Jilin Western Power Grid, it can also be seen that the correlation coefficient and confidence level of wind power forecast error have an impact on the probability ATC expectation. It can be seen that in the ATC evaluation process of power system with a high proportion of wind power, it is necessary to consider the confidence level of total power generation cost and the influence of wind farm correlation on the ATC evaluation results. The proposed wind power prediction error correlation modeling method corrects the wind farm output prediction value by obtaining the wind power output prediction error that conforms to the actual wind farm correlation. In the process of evaluating ATC, the confidence level should be reasonably set, and the prediction error caused by the uncertainty of wind power output should be reduced by taking into account the correlation of wind power forecast error, the risk cost of system operation should be reduced, and the calculation accuracy of ATC between regions should be improved.
|
Received: 04 May 2022
|
|
|
|
|
[1] 姜海洋, 杜尔顺, 朱桂萍, 等. 面向高比例可再生能源电力系统的季节性储能综述与展望[J]. 电力系统自动化, 2020, 44(19): 194-207. Jiang Haiyang, Du Ershun, Zhu Guiping, et al.Review and prospect of seasonal energy storage for power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44(19): 194-207. [2] 周博, 艾小猛, 方家琨, 等. 计及超分辨率风电出力不确定性的连续时间鲁棒机组组合[J]. 电工技术学报, 2021, 36(7): 1456-1467. Zhou Bo, Ai Xiaomeng, Fang Jiakun, et al.Continuous-time modeling based robust unit commitment considering beyond-the-resolution wind power uncertainty[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1456-1467. [3] 麻秀范, 王戈, 朱思嘉, 等. 计及风电消纳与发电集团利益的日前协调优化调度[J]. 电工技术学报, 2021, 36(3): 579-587. Ma Xiufan, Wang Ge, Zhu Sijia, et al.Coordinated day-ahead optimal dispatch considering wind power consumption and the benefits of power generation group[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 579-587. [4] 陈厚合, 李国庆, 张芳晶. 风电并网系统区域间概率可用输电能力计算[J]. 电力系统保护与控制, 2014, 42(21): 59-65. Chen Houhe, Li Guoqing, Zhang Fangjing.Calculation of probabilistic available transfer capability of wind farm incorporated system[J]. Power System Protection and Control, 2014, 42(21): 59-65. [5] 白浩, 于力, 姜臻, 等. 考虑售电侧放开后的配电网供电能力计算方法[J]. 电力系统保护与控制, 2020, 48(10): 99-105. Bai Hao, Yu Li, Jiang Zhen, et al.Calculation method of power supply capacity of a distribution network considering the opening of power sale side[J]. Power System Protection and Control, 2020, 48(10): 99-105. [6] 王艳玲, 韩学山, 周晓峰. 基于扩展潮流的输电断面最大传输能力[J]. 电力系统保护与控制, 2011, 39(13): 20-24, 31. Wang Yanling, Han Xueshan, Zhou Xiaofeng.The total transfer capability of cross-section of transmission line based on expanded power flow[J]. Power System Protection and Control, 2011, 39(13): 20-24, 31. [7] 杨海涛, 江晶晶, 赵敏, 等. 基于模型预测控制的区域综合能源系统运行优化方法[J]. 电气技术, 2022, 23(4): 7-13. Yang Haitao, Jiang Jingjing, Zhao Min, et al.Operational optimization method of regional integrated energy system based on model predictive control[J]. Electrical Engineering, 2022, 23(4): 7-13. [8] 王晨旭, 唐飞, 刘涤尘, 等. 基于双层代理模型的概率-区间潮流计算及灵敏度分析[J]. 电工技术学报, 2022, 37(5): 1181-1193. Wang Chenxu, Tang Fei, Liu Dichen, et al.Probabilistic-interval power flow and sensitivity analysis using double layer surrogate method[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1181-1193. [9] 孙鑫, 王博, 陈金富, 等. 基于稀疏多项式混沌展开的可用输电能力不确定性量化分析[J]. 中国电机工程学报, 2019, 39(10): 2904-2914. Sun Xin, Wang Bo, Chen Jinfu, et al.Sparse polynomial chaos expansion based uncertainty quantification for available transfer capability[J]. Proceedings of the CSEE, 2019, 39(10): 2904-2914. [10] 李锴, 党杰, 孙鑫, 等. 计及风电功率不确定性的电力系统输电可靠性裕度快速评估[J]. 电网技术, 2019, 43(9): 3337-3343. Li Kai, Dang Jie, Sun Xin, et al.Fast evaluation of transmission reliability margin of power systems considering wind power uncertainty[J]. Power System Technology, 2019, 43(9): 3337-3343. [11] Kou Xiao, Li Fangxing.Interval optimization for available transfer capability evaluation considering wind power uncertainty[J]. IEEE Transactions on Sustainable Energy, 2020, 11(1): 250-259. [12] 罗钢, 石东源, 蔡德福, 等. 计及相关性的含风电场电力系统概率可用输电能力快速计算[J]. 中国电机工程学报, 2014, 34(7): 1024-1032. Luo Gang, Shi Dongyuan, Cai Defu, et al.Fast calculation of probabilistic available transfer capability considering correlation in wind power integrated systems[J]. Proceedings of the CSEE, 2014, 34(7): 1024-1032. [13] Chen Houhe, Fang Xin, Zhang Rufeng, et al.Available transfer capability evaluation in a deregulated electricity market considering correlated wind power[J]. IET Generation, Transmission & Distribution, 2018, 12(1): 53-61. [14] 田园, 汪可友, 李国杰, 等. 计及风电相关性的二阶锥动态随机最优潮流[J]. 电力系统自动化, 2018, 42(5): 41-47. Tian Yuan, Wang Keyou, Li Guojie, et al.Dynamic stochastic optimal power flow based on second-order cone programming considering wind power correlation[J]. Automation of Electric Power Systems, 2018, 42(5): 41-47. [15] 惠鑫欣. 计及风速时空相关性的风电并网系统可用输电能力计算[D]. 吉林: 东北电力大学, 2018. [16] 郑义, 白晓清, 苏向阳. 考虑风电不确定性的Φ-散度下基于条件风险价值的鲁棒动态经济调度[J]. 电力自动化设备, 2021, 41(2): 63-70. Zheng Yi, Bai Xiaoqing, Su Xiangyang.Robust dynamic economic dispatch considering uncertainty of wind power based on conditional value-at-risk under Φ-divergence[J]. Electric Power Automation Equipment, 2021, 41(2): 63-70. [17] 蒋海峰, 张曼. 基于混合半云模型的相关性风速及风电场并网可靠性分析[J]. 电力系统自动化, 2020, 44(22): 127-133. Jiang Haifeng, Zhang Man.Analysis on correlation-based wind speed based on mixed half-cloud model and grid-connection reliability of wind farm[J]. Automation of Electric Power Systems, 2020, 44(22): 127-133. [18] 马然, 栗文义, 齐咏生. 风电机组健康状态预测中异常数据在线清洗[J]. 电工技术学报, 2021, 36(10): 2127-2139. Ma Ran, Li Wenyi, Qi Yongsheng.Online cleaning of abnormal data for the prediction of wind turbine health condition[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2127-2139. [19] Tefera K, Tripathy P, Adda R.Electromagnetic and mechanical stress analysis of wind-driven synchronous reluctance generator[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(1): 107-114. [20] Carrion M, Philpott A B, Conejo A J, et al.A stochastic programming approach to electric energy procurement for large consumers[J]. IEEE Transactions on Power Systems, 2007, 22(2): 744-754. [21] Baradar M, Hesamzadeh M R, Ghandhari M.Second-order cone programming for optimal power flow in VSC-type AC-DC grids[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4282-4291. [22] 张迪, 苗世洪, 周宁, 等. 分布式发电市场化环境下各交易主体响应行为模型[J]. 电工技术学报, 2020, 35(15): 3327-3340. Zhang Di, Miao Shihong, Zhou Ning, et al.Research on response behavior model of trading entities considering the marketization environment of distributed generation[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3327-3340. [23] Li Fangxing, Bo Rui.DCOPF-based LMP simulation: algorithm, comparison with ACOPF, and sensitivity[J]. IEEE Transactions on Power Systems, 2007, 22(4): 1475-1485. [24] 王思聪. 中国海陆风电成本研究[J]. 宏观经济研究, 2019(8): 170-175. Wang Sicong.A study on onshore and offshore wind power cost in China[J]. Macroeconomics, 2019(8): 170-175. [25] 张儒峰, 姜涛, 李国庆, 等. 考虑电转气消纳风电的电-气综合能源系统双层优化调度[J]. 中国电机工程学报, 2018, 38(19): 5668-5678, 5924. Zhang Rufeng, Jiang Tao, Li Guoqing, et al.Bi-level optimization dispatch of integrated electricity-natural gas systems considering P2G for wind power accommodation[J]. Proceedings of the CSEE, 2018, 38(19): 5668-5678, 5924. |
|
|
|