|
|
Feature Extraction for Partial Discharge Signals Based on the Optimal Wavelet Packet Basis Transform and Kernel Principal Component Analysis |
Tang Ju1, Xie Yanbin1, Zhou Qian2, Zhang Xiaoxing1 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China 2. Chongqing Jiangbei Power Supply Bureau Chongqing 401147 China |
|
|
Abstract Ultra-high frequency (UHF) method has been widely used for partial discharge (PD) detection in gas insulated switchgear (GIS), but the feature extraction for UHF PD signals is a difficult issue all the while. In this paper, a method using wavelet packet transform (WPT) is proposed to decompose the UHF PD signals, and the best basis is selected using minimum entropy criterion based on UHF PD mathematical model of four typical defects in GIS, then the energy in each frequency range, maximal values of module and absolute average values in each scale are computed according to WP coefficients, and the features space is constructed integrally; Kernel principal component analysis (KPCA) is also proposed for reducing dimension of features, and dimension crisis is resolved well, and the divergence matrix strangeness in every class is eliminated. At the same time, the characteristics of signals are retained the farthest. The classification results show that the features used in this paper are quite well for UHF PD defect identification.
|
Received: 05 November 2009
Published: 04 March 2014
|
|
|
|
|
[1] 邱毓昌. GIS装置及其绝缘技术[M]. 北京: 水利电力出版社, 1994. [2] 邱昌容, 王乃庆. 电工设备局部放电及其测试技术[M]. 北京: 机械工业出版社, 1994. [3] 唐炬. 组合电器局放在线监测外置传感器和复小波抑制干扰的研究[D]. 重庆: 重庆大学, 2004. [4] 成永红, 谢小军, 陈玉, 等. 气体绝缘系统中典型缺陷的超宽频带放电信号的分形分析[J]. 中国电机工程学报, 2004, 24(8): 99-102. [5] Hans Gerd Kranz. PD pulse sequence analysis and its relevance for on-site PD defect identification and evaluation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(2): 276-284. [6] Sahoo N C, Salama M M A. Trends in partial discharge pattern classification: a survey[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(2): 248-263. [7] 刘云鹏, 律方成, 李成榕. 局部放电灰度图像数学形态谱的研究[J]. 中国电机工程学报, 2004, 24(5): 179-183. [8] 肖燕, 黄成军, 郁惟镛, 等. 波形匹配追踪算法在多局放脉冲提取中的应用[J]. 中国电机工程学报, 2005, 25(11): 157-162. [9] 王国利, 郑毅, 郝艳捧, 等. 用于变压器局部放电检测的超高频传感器的初步研究[J]. 中国电机工程学报, 2002, 22(4): 154-160. [10] Stephane Mallat. 信号处理的小波导引[M]. 杨力华, 戴道清, 黄文良, 等译, 北京: 机械工业出版社, 2002. [11] 孔锐, 施泽生, 郭立, 等. 利用组合核函数提高核主分量分析的性能[J]. 中国图象图形学报, 2004, 9(1): 40-45. [12] 周倩, 唐炬, 唐铭, 等. GIS内4种典型缺陷的局部放电超高频数学模型构建[J]. 中国电机工程学报, 2006, 26(8): 99-105. [13] 孙才新, 许高峰, 唐炬, 等. 以盒维数和信息维数为识别特征量的GIS局部放电模式识别方法[J]. 中国电机工程学报, 2005, 24(2): 100-104. [14] 孙才新, 许高峰, 唐炬, 等. 检测GIS局部放电的内置传感器的模型及性能研究[J]. 中国电机工程学报, 2004, 24(8): 89-94. [15] 张晓文, 杨煜普, 许晓鸣. 基于小波变换的特征构造与选择[J]. 计算机工程与应用, 2003, 19: 25-28. |
|
|
|