|
|
All-Solid-State Bipolar Linear Transformer Drive-Type Pulse Current Generator for Inductive Loads |
Xu Ning1,2, Mi Yan1, Li Zhengmin1, Zheng Wei1, Ma Chi1 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China;; 2. United Automotive Electronic Systems Co. Ltd Shanghai 201206 China |
|
|
Abstract Among the cancer treatment methods based on pulsed power technology, the treatment method using bipolar pulsed magnetic field treatment has obvious advantages. For the way of generating a magnetic field through a current coil, the key is to develop a bipolar pulse current generator that can be used for inductive loads, which is the research goal of this paper. Marx, modular multilevel converter (MMC) and linear transformer drive (LTD) are commonly used pulse generator topologies, but the above individual topologies have obvious defects in the application background of this paper. Therefore, this paper pioneers the advantages of modular full-bridge multilevel converter (FB-MMC) topology with LTD topology to develop a bipolar pulse current generator. With the advantages of LTD topology, the generator can output a large pulse current, and the charging process of the energy storage capacitor does not require additional switching action, which can reduce the loss of switching; With the advantages of FB-MMC topology, the generator has flexible waveform modulation capabilities and forms a bipolar operating mode, which effectively avoids the problem of core saturation in LTD and is conducive to the high-frequency operation of the generator. Firstly, the topological principle of the generator developed in this paper is introduced. When the generator works under inductive load, each stage of the generator has four working states: charging mode, discharge mode, freewheeling mode and energy recovery mode, of which the freewheeling mode is dispensable in the process of generator operation. By controlling the presence or absence of freewheeling mode, and then flexibly combining with the other two modes of different stage generators (discharge mode and energy recovery mode), the output waveform can be modulated. Secondly, the hardware circuit of the generator is designed and selected. First, determine the target parameters of the generator according to the experimental background, and then select the main switch and energy storage capacitor with reference to the parameters, and design the driving circuit and overvoltage protection circuit of the switch. In this paper, the Kelvin encapsulated IGBT is selected as the main switch, and the two IGBTs are considered for use in parallel. The drive circuit designed in this paper makes the parallel IGBT conduction speed fast and the shutdown speed slow, and ensures that the IGBT is in a negative voltage state when it is turned off. This reduces the overvoltage amplitude of the IGBT when turning off the inductive current to a certain extent, improves the reliability of the IGBT shutdown, and avoids misleading conditions. At the same time, a suitable discharge blocking RCD buffer circuit is designed to further protect the IGBT from overvoltage breakdown. Finally, a prototype of a 4-stage all-solid-state bipolar LTD pulse current generator is developed and tested for performance. The test results show that the generator can output a pulse current of ±800 A under an inductive load with a rise time of 600 ns. The generator operates at a maximum frequency of 10 kHz and has flexible waveform modulation to output a variety of waveforms such as triangle waves, trapezoidal waves, and step waves. In summary, the generator designed in this paper combines the advantages of FB-MMC and LTD pulse power topologies, has a compact and simple structure, and can flexibly adjust the circuit design, which can be applied to the medical experimental research of pulsed magnetic field for tumor treatment.
|
Received: 07 May 2022
|
|
|
|
|
[1] Kranjc S, Kranjc M, Scancar J, et al.Electrochemotherapy by pulsed electromagnetic field treatment (PEMF) in mouse melanoma B16F10 in vivo[J]. Radiology and Oncology, 2016, 50(1): 39-48. [2] Novickij V, Grainys A, Kučinskaitė-Kodzė I, et al.Magneto-permeabilization of viable cell membrane using high pulsed magnetic field[J]. IEEE Transactions on Magnetics, 2015, 51(9): 1-5. [3] Novickij V, Girkontaitė I, Zinkevičienė A, et al.Reversible permeabilization of cancer cells by high sub-microsecond magnetic field[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-4. [4] Novickij V, Grainys A, Novickij J, et al.Irreversible magnetoporation of micro-organisms in high pulsed magnetic fields[J]. IET Nanobiotechnology, 2014, 8(3): 157-162. [5] 储贻道. 高变化率脉冲磁场的产生及其对肿瘤细胞带电粒子的影响[D]. 重庆: 重庆大学, 2015. [6] 代璐健. 纳秒脉冲磁场联合靶向纳米氧化铁杀伤A375细胞的实验研究[D]. 重庆: 重庆大学, 2021. [7] Golovin Y I, Gribanovsky S L, Golovin D Y, et al.Towards nanomedicines of the future: remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields[J]. Journal of Controlled Release, 2015, 219: 43-60. [8] Naud C, Thébault C, Carrière M, et al.Cancer treatment by magneto-mechanical effect of particles, a review[J]. Nanoscale Advances, 2020, 2(9): 3632-3655. [9] Lopez S, Hallali N, Lalatonne Y, et al.Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields[J]. Nanoscale Advances, 2022, 4(2): 421-436. [10] Kim D H, Rozhkova E A, Ulasov I V, et al.Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction[J]. Nature Materials, 2010, 9(2): 165-171. [11] 王晓雨, 董守龙, 马剑豪, 等. 一种新型的双极性Marx高重频脉冲发生器[J]. 电工技术学报, 2020, 35(4): 799-806. Wang Xiaoyu, Dong Shoulong, Ma Jianhao, et al.A novel high-frequency pulse generator based on bipolar and Marx topologies[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 799-806. [12] Canacsinh H, Redondo L M, Silva J F.Marx-type solid-state bipolar modulator topologies: performance comparison[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2603-2610. [13] Redondo L M, Kandratsyeu A, Atkinson T, et al.Testing of a bipolar solid-state Marx generator for berlin BESSY II injection kicker system[J]. IEEE Transactions on Plasma Science, 2021, 49(6): 1936-1940. [14] Zhong Zhengyi, Rao Junfeng, Liu Haotian, et al.Review on solid-state-based Marx generators[J]. IEEE Transactions on Plasma Science, 2021, 49(11): 3625-3643. [15] 田波, 吴郁, 黄淮, 等. 面向低压高频开关应用的功率JFET的功耗[J]. 电工技术学报, 2009, 24(8): 106-110. Tian Bo, Wu Yu, Huang Huai, et al.Power loss of power JFET facing to low voltage and high frequency switching application[J]. Transactions of China Electrotechnical Society, 2009, 24(8): 106-110. [16] 魏云海, 陈民铀, 赖伟, 等. 基于IGBT结温波动平滑控制的主动热管理方法综述[J]. 电工技术学报, 2022, 37(6): 1415-1430. Wei Yunhai, Chen Minyou, Lai Wei, et al.Review on active thermal control methods based on junction temperature swing smooth control of IGBTs[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1415-1430. [17] Elserougi A A, Abdelsalam I, Massoud A M, et al.A full-bridge submodule-based modular unipolar/ bipolar high-voltage pulse generator with sequential charging of capacitors[J]. IEEE Transactions on Plasma Science, 2017, 45(1): 91-99. [18] 米彦, 万晖, 卞昌浩, 等. 基于模块化多电平换流器的模块化前后沿可调高压纳秒脉冲发生器的研制[J]. 电工技术学报, 2020, 35(6): 1279-1289. Mi Yan, Wan Hui, Bian Changhao, et al.Design of modular high-voltage nanosecond pulse generator with adjustable rise/fall time based on modular multilevel converter topologies[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1279-1289. [19] 米彦, 陈嘉诚, 许宁, 等. 基于辅助充电支路的模块化多电平变换器结构高频纳秒脉冲发生器[J]. 电工技术学报, 2021, 36(2): 435-444. Mi Yan, Chen Jiacheng, Xu Ning, et al.High frequency nanosecond pulse generator based on modular multilevel converter structure with auxiliary charging branch[J]. Transactions of China Electro-technical Society, 2021, 36(2): 435-444. [20] 周良骥. 快脉冲直线变压器驱动源(LTD)技术初步研究[D]. 绵阳: 中国工程物理研究院, 2006. [21] 王淦平. 直线变压器工作特性研究[D]. 绵阳: 中国工程物理研究院, 2009. [22] Collier L, Dickens J, Mankowski J, et al.Performance analysis of an all solid-state linear transformer driver[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1755-1761. [23] 江伟华. 基于半导体开关的高重频LTD[J]. 高电压技术, 2015, 41(6): 1776-1780. Jiang Weihua.High-frequency repetitive LTD based on semiconductor switches[J]. High Voltage Engineering, 2015, 41(6): 1776-1780. [24] Kazemi M R, Sugai Taichi, Tokuchi A, et al.Waveform control of pulsed-power generator based on solid-state LTD[J]. IEEE Transactions on Plasma Science, 2017, 45(2): 247-251. [25] Rao Junfeng, Zhu Yicheng, Wang Yonggang, et al.Study on the basic characteristics of solid-state linear transformer drivers[J]. IEEE Transactions on Plasma Science, 2020, 48(9): 3168-3175. [26] 郭帆, 贾伟, 谢霖燊, 等. 基于半导体开关和LTD技术的高重频快沿高压脉冲源[J]. 强激光与粒子束, 2016, 28(5): 119-123. Guo Fan, Jia Wei, Xie Linshen, et al.High power high repetitive frequency generator based on MOSFET and LTD technology[J]. High Power Laser and Particle Beams, 2016, 28(5): 119-123. [27] 江伟华, 须贝太一, 德地明. 基于固态LTD的大容量脉冲功率电源[J]. 电力电子技术, 2021, 55(10): 2-4, 33. Jiang Weihua, Sugai T, Tokuchi A.Large-capacity pulsed power generators based on solid-state LTD[J]. Power Electronics, 2021, 55(10): 2-4, 33. [28] 董守龙, 王艺麟, 曾伟荣, 等. 一种全固态多匝直线型变压器驱动源的研制[J]. 电工技术学报, 2020, 35(7): 1584-1591. Dong Shoulong, Wang Yilin, Zeng Weirong, et al.The development of all solid-state multi-turn linear transformer driver[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1584-1591. [29] 李兰茜, 丁卫东, 孙国祥, 等. 基于推挽电路的双极性长脉宽单级LTD模块[J]. 高电压技术, 2022, 48(3): 1168-1176. Li Lanxi, Ding Weidong, Sun Guoxiang, et al.Bipolar long pulse width single LTD module based on push-pull circuit[J]. High Voltage Engineering, 2022, 48(3): 1168-1176. [30] 饶俊峰, 吴施蓉, 朱益成, 等. 双极性固态直线变压器驱动器的研制[J]. 强激光与粒子束, 2021, 33(6): 55-64. Rao Junfeng, Wu Shirong, Zhu Yicheng, et al.Development of bipolar solid-state linear transformer driver[J]. High Power Laser and Particle Beams, 2021, 33(6): 55-64. [31] 唐潇, 孙文杰, 何明祖, 等. 双极性直线型变压器驱动源的研制[J]. 强激光与粒子束, 2021, 33(6): 36-43. Tang Xiao, Sun Wenjie, He Mingzu, et al.A bipolar nanosecond pulse source based on liner transformer driver[J]. High Power Laser and Particle Beams, 2021, 33(6): 36-43. [32] Feng Yu, Sugai Taichi, Jiang Weihua.Solid-state bipolar linear transformer driver using inductive energy storage[J]. IEEE Transactions on Plasma Science, 2021, 49(9): 2887-2892. [33] Mi Yan, Xu Ning, Chen Jiacheng, et al.High-frequency bipolar solid-state LTD based on a self-triggering H-bridge[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5898-5907. [34] Mi Yan, Dai Lujian, Xu Ning, et al.Viability inhibition of A375 melanoma cellsin vitroby a high-frequency nanosecond-pulsed magnetic field combined with targeted iron oxide nanoparticles via membrane magnetoporation[J]. Nanotechnology, 2021, 32(38): 385101. [35] 宁大龙, 同向前, 李侠, 等. IGBT串联器件门极RCD有源均压电路[J]. 电工技术学报, 2013, 28(2): 192-198. Ning Dalong, Tong Xiangqian, Li Xia, et al.Design of RCD active gate control circuit for series connected IGBTs[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 192-198. [36] 冯锟, 杨婳, 陈超, 等. 短路故障下直流固态断路器缓冲电路的设计[J]. 电力系统保护与控制, 2018, 46(3): 97-102. Feng Kun, Yang Hua, Chen Chao, et al.Design of snubber circuit for DC solid-state circuit breaker in short-circuit fault[J]. Power System Protection and Control, 2018, 46(3): 97-102. [37] 郝林钊, 何山, 王维庆, 等. 一种基于CR-CD型电路的直驱风机变流器IGBT过电压保护电路研究[J]. 电力系统保护与控制, 2019, 47(9): 150-157. Hao Linzhao, He Shan, Wang Weiqing, et al.Research on IGBT overvoltage protection circuit of direct drive wind turbine converter based on CR-CD circuit[J]. Power System Protection and Control, 2019, 47(9): 150-157. |
|
|
|