|
|
Model Predictive Control Based DC Microgrid Virtual Inertia Optimal Method |
Zhao Shuqiang1, Wang Hui1, Tian Na2, Meng Jianhui1, Wang Chen1, Tian Yanjun1 |
1. Key Laboratory of Distributed Energy Storage and Microgrid of Hebei Province North China Electric Power University Baoding 071003 China; 2. Economic Research Institute of State Grid Hebei Electric Power Company Shijiazhuang 050024 China |
|
|
Abstract To improve the stability and dynamic characteristics of microgrid DC bus voltage, researchers have proposed adaptive virtual inertial control methods. These methods have clear analytical formulas for virtual inertia, but providing the design details for the “optimal” parameters is challenging. Moreover, the operation state determines the virtual inertia, and the controller acts in a delayed manner with the system variations. As a result, emergency preventive control cannot be realized due to dynamic voltage constraints. Therefore, a model predictive controller has been proposed to realize the virtual inertia optimization of the DC microgrid by dynamically adjusting the units’ virtual inertia coefficients. Firstly, the linear discrete model of a DC microgrid with virtual inertial control units was established to predict the future trend of system output. Secondly, the model predictive controller was designed to minimize the weighted sum of DC voltage tracking and virtual inertia, maintain the DC voltage stability, and make the intensity of the inertial response acceptable. Taking the DC voltage and its climbing rate as the constraints, preventing the excess safety threshold for the dynamic voltage is also crucial in case of machine cut-off, load cut-off, or even system collapse. At each sampling period, the individual virtual inertia coefficient is solved and updated to realize the optimization of virtual inertia. Finally, the selection principles of the main parameters are given through theoretical analysis. Hardware-in-the-loop simulation experiments have been built to verify the proposed method. Compared with the adaptive virtual inertial control, the proposed method provides a stronger inertial support for the system, increases rapidly in the initial stage of the sudden load increase, and reduces the drop of DC bus voltage. In reverse recovery, the virtual inertia coefficients were reduced, so the DC voltage recovery is accelerated in the beginning, and the recovery speed is reduced in the following time to eliminate the overshoot. In addition, the test result shows that the proposed method can maintain a steady state and its climbing rate within the desired range. Finally, the model mismatch scenarios have also been tested. The result shows that, under the line model mismatch, the performance of DC bus voltage and virtual inertia coefficients do not degrade substantially by compensating for the optimized rolling, thus guaranteeing the controller’s adaptive performance. Conclusions can be drawn: (1) The proposed method can improve the stability, dynamic characteristics, and safe operation of microgrid DC bus voltage. Aiming at minimizing DC voltage tracking error and virtual inertia coefficients, the proposed control has advantages in improving DC bus voltage stability, accelerating recovery speed, and reducing overshoot. It can also prevent the voltage and its climbing rate out of the thresholds. (2) The proposed method can reduce the optimization size problem, which is beneficial for optimizing the computational burden of the MPC controller. The prediction model can be effectively simplified and well controlled by simplifying the DC microgrid line model and converter control loops, thus reducing the optimization scale and contributing to accelerated calculation speed. (3) The proposed method provides certain tolerance to line model mismatch. MPC uses a rolling optimization mechanism to update the optimization problem with updated measured values, which mitigates the model uncertainty caused by the mismatch.
|
Received: 27 April 2022
|
|
|
|
|
[1] 熊雄, 季宇, 李蕊, 等. 直流配用电系统关键技术及应用示范综述[J]. 中国电机工程学报, 2018, 38(23): 6802-6813, 7115. Xiong Xiong, Ji Yu, Li Rui, et al.An overview of key technology and demonstration application of DC distribution and consumption system[J]. Proceedings of the CSEE, 2018, 38(23): 6802-6813, 7115. [2] 朱晓荣, 李铮, 孟凡奇. 基于不同网架结构的直流微电网稳定性分析[J]. 电工技术学报, 2021, 36(1): 166-178. Zhu Xiaorong, Li Zheng, Meng Fanqi.Stability analysis of DC microgrid based on different grid structures[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 166-178. [3] Alshareef M, Lin Zhengyu, Li Fulong, et al.A grid interface current control strategy for DC microgrids[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(3): 249-256. [4] Li Yong, He Li, Liu Fang, et al.Flexible voltage control strategy considering distributed energy storages for DC distribution network[J]. IEEE Transa-ctions on Smart Grid, 2019, 10(1): 163-172. [5] 曹建博, 王林, 黄辉, 等. 直流微电网多端口变换器虚拟惯性控制策略[J]. 电网技术, 2021, 45(7): 2604-2615. Cao Jianbo, Wang Lin, Huang Hui, et al.Virtual inertia control strategy of multi-port converter used in DC micro-grid[J]. Power System Technology, 2021, 45(7): 2604-2615. [6] 王勉, 唐芬, 赵宇明, 等. 虚拟直流电机的参数自适应控制策略[J]. 电力系统自动化, 2020, 44(14): 148-155. Wang Mian, Tang Fen, Zhao Yuming, et al.Parameter adaptive control strategy of virtual DC machine[J]. Automation of Electric Power Systems, 2020, 44(14): 148-155. [7] Wang Yi, Wang Chen, Xu Lie, et al.Adjustable inertial response from the converter with adaptive droop control in DC grids[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 3198-3209. [8] Zhu Xiaorong, Xie Zhiyun, Jing Shuzhi, et al.Distributed virtual inertia control and stability analysis of DC microgrid[J]. IET Generation Trans-mission & Distribution, 2018, 12(14): 3477-3486. [9] Zhu Xiaorong, Meng Fanqi, Xie Zhiyun, et al.An inertia and damping control method of DC-DC converter in DC microgrids[J]. IEEE Transactions on Energy Conversion, 2020, 35(2): 799-807. [10] 伍文华, 陈燕东, 罗安, 等. 一种直流微网双向并网变换器虚拟惯性控制策略[J]. 中国电机工程学报, 2017, 37(2): 360-372. Wu Wenhua, Chen Yandong, Luo An, et al.A virtual inertia control strategy for bidirectional grid-connected converters in DC micro-grids[J]. Pro-ceedings of the CSEE, 2017, 37(2): 360-372. [11] 张辉, 张凯涛, 肖曦, 等. 模拟直流发电机特性的储能变换器控制策略[J]. 电力系统自动化, 2017, 41(20): 126-132. Zhang Hui, Zhang Kaitao, Xiao Xi, et al.Control strategy of energy storage converter for simulating DC generator characteristics[J]. Automation of Elec-tric Power Systems, 2017, 41(20): 126-132. [12] 王慧, 赵书强, 孟建辉, 等. 基于下垂曲线截距调整的直流微电网自适应虚拟惯性控制[J]. 电力系统自动化, 2021, 45(24): 97-105. Wang Hui, Zhao Shuqiang, Meng Jianhui, et al.Adaptive virtual inertia control for DC microgrid based on droop curve intercept adjustment[J]. Auto-mation of Electric Power Systems, 2021, 45(24): 97-105. [13] 曹新慧, 刘昱良, 苗世洪, 等. 考虑参数自适应的直流微电网DC/DC变换器虚拟惯性控制策略研究[J]. 高电压技术, 2020, 46(4): 1281-1290. Cao Xinhui, Liu Yuliang, Miao Shihong, et al.Research on virtual inertial control strategy of DC/DC converter in DC microgrid considering self-adaptive parameters[J]. High Voltage Engineering, 2020, 46(4): 1281-1290. [14] 张祥宇, 李浩, 付媛. 含新型虚拟电机的直流微网动态稳定性分析与自适应电压惯性控制[J]. 高电压技术, 2021, 47(8): 2865-2874. Zhang Xiangyu, Li Hao, Fu Yuan.Dynamic stability analysis and self-adaptive voltage inertia control of DC microgrids with novel virtual machine[J]. High Voltage Engineering, 2021, 47(8): 2865-2874. [15] 张辉, 梁誉馨, 孙凯, 等. 直流微电网中多端口隔离型DC-DC变换器的改进虚拟电容控制策略[J]. 电工技术学报, 2021, 36(2): 292-304. Zhang Hui, Liang Yuxin, Sun Kai, et al.Improved virtual capacitor control strategy of multi-port iso-lated DC-DC converter in DC microgrid[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(2): 292-304. [16] 孟建辉, 邹培根, 王毅, 等. 基于灵活虚拟惯性控制的直流微网小信号建模及参数分析[J]. 电工技术学报, 2019, 34(12): 2615-2626. Meng Jianhui, Zou Peigen, Wang Yi, et al.Small-signal modeling and parameter analysis of the DC microgrid based on flexible virtual inertia control[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2615-2626. [17] 孟建辉, 宋美琪, 王毅, 等. 虚拟电容控制下并网型直流微网VSC多约束稳定运行边界[J]. 电力系统自动化, 2019, 43(15): 172-179, 199. Meng Jianhui, Song Meiqi, Wang Yi, et al.Multi-constraint stable operation boundary of grid-connected voltage source converter of DC microgrid with virtual capacitance control[J]. Automation of Electric Power Systems, 2019, 43(15): 172-179, 199. [18] 魏新迟, 许利通, 骆仁松, 等. 考虑饱和效应的无刷双馈发电机功率模型预测控制[J]. 电工技术学报, 2021, 36(17): 3721-3729. Wei Xinchi, Xu Litong, Luo Rensong, et al.Model predictive power control of brushless doubly-fed induction generator considering saturation effect[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3721-3729. [19] 周左, 汪洋, 李正明. 基于占空比控制的Vienna整流器模型预测控制策略[J]. 电力系统保护与控制, 2021, 49(10): 162-169. Zhou Zuo, Wang Yang, Li Zhengming.Model predi-ctive control strategy of a Vienna rectifier based on duty cycle control[J]. Power System Protection and Control, 2021, 49(10): 162-169. [20] 郭磊磊, 金楠, 李琰琰, 等. 并网逆变器无电网电压传感器模型预测控制[J]. 电工技术学报, 2020, 35(12): 2612-2622. Guo Leilei, Jin Nan, Li Yanyan, et al.Grid voltage sensorless model predictive control for grid-connected inverters[J]. Transactions of China Elec-trotechnical Society, 2020, 35(12): 2612-2622. [21] Mardani M M, Khooban M H, Masoudian A, et al.Model predictive control of DC-DC converters to mitigate the effects of pulsed power loads in naval DC microgrids[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5676-5685. [22] 年珩, 叶余桦. 三端口隔离双向DC-DC变换器模型预测控制技术[J]. 电工技术学报, 2020, 35(16): 3478-3488. Nian Heng, Ye Yuhua.Model predictive control of three-port isolated bidirectional DC-DC converter[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3478-3488. [23] 李帅虎, 向丽珍, 向振宇, 等. 用于改善VSG频率响应的模型预测控制方法[J]. 高电压技术, 2021, 47(8): 2856-2864. Li Shuaihu, Xiang Lizhen, Xiang Zhenyu, et al.MPC control method for improving VSG frequency response[J]. High Voltage Engineering, 2021, 47(8): 2856-2864. [24] 陈来军, 王任, 郑天文, 等. 改善独立微网频率动态特性的虚拟同步发电机模型预测控制[J]. 电力系统自动化, 2018, 42(3): 40-47. Chen Laijun, Wang Ren, Zheng Tianwen, et al.Model predictive control of virtual synchronous generator to improve dynamic characteristic of frequency for isolated microgrid[J]. Automation of Electric Power Systems, 2018, 42(3): 40-47. [25] 陈虹. 模型预测控制[M]. 北京: 科学出版社, 2013. [26] 吴岩, 王玮, 吴学智, 等. 微电网跟踪调度计划双层双时间尺度实时控制策略[J]. 电力自动化设备, 2021, 41(1): 120-134. Wu Yan, Wang Wei, Wu Xuezhi, et al.Two-layer double-time scale real-time control strategy of micro-grid for tracking scheduling plan[J]. Electric Power Automation Equipment, 2021, 41(1): 120-134. [27] 宋琼, 张辉, 孙凯, 等. 多微源独立微网中虚拟同步发电机的改进型转动惯量自适应控制[J]. 中国电机工程学报, 2017, 37(2): 412-424. Song Qiong, Zhang Hui, Sun Kai, et al.Improved adaptive control of inertia for virtual synchronous generators in islanding micro-grid with multiple distributed generation units[J]. Proceedings of the CSEE, 2017, 37(2): 412-424. [28] Meng Jianhui, Wang Yi, Wang Chen, et al.Design and implementation of hardware-in-the-loop simu-lation system for testing control and operation of DC microgrid with multiple distributed generation units[J]. IET Generations Transmission & Distribution, 2017, 11(12): 3065-3072. [29] Zhi Na, Ding Ke, Du Liang, et al.An SOC-based virtual DC machine control for distributed storage systems in DC microgrids[J]. IEEE Transactions on Energy Conversion, 2020, 35(3): 1411-1420. |
|
|
|