[1] Majda-Zdancewicz E, Suproniuk M, Pawłowski M, et al.Current state of photoconductive semiconductor switch engineering[J]. Opto-Electronics Review, 2018, 26(2): 92-102.
[2] Ding Xiaofeng, Zhou Yang, Cheng Jiawei.A review of gallium nitride power device and its applications in motor drive[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(1): 54-64.
[3] Xu Ming, Liu Chun, Luo Wei, et al.Pulse compression characteristics of an opposed-electrode nonlinear GaAs photoconductive semiconductor switch at 2 μJ excitation[J]. IEEE Electron Device Letters, 2022, 43(5): 753-756.
[4] Luan Chongbiao, Li Hongtao.Influence of hot-carriers on the on-state resistance in Si and GaAs photoconductive semiconductor switches working at long pulse width[J]. Chinese Physics Letters, 2020, 37(4): 044203.
[5] 袁建强, 刘宏伟, 马勋, 等. 基于光导开关的固态脉冲功率源及其应用[J]. 高电压技术, 2015, 41(6): 1807-1817.
Yuan Jianqiang, Liu Hongwei, Ma Xun, et al.Development and application of solid state pulsed power generators based on photoconductive semiconductor switches[J]. High Voltage Engineering, 2015, 41(6): 1807-1817.
[6] Ray S, Alla A, Naz S, et al.A method to maximize the amplitude of generated terahertz pulse from LT GaAs photoconductive semiconductor switch[J]. IEEE Transactions on Plasma Science, 2015, 43(6): 1851-1854.
[7] 高荣荣, 徐鸣, 罗伟, 等. 重复频率下GaAs光电导开关的热积累研究[J/OL]. 电工技术学报, 2023: 1-10[2023-05-15]. https://doi.org/10.19595/j.cnki.1000-6753.tces.221947.
Gao Rongrong, Xu Ming, Luowei, et al. Research on thermal accumulation of GaAs photoconductive switch at repetition rates[J]. Transactions of China Electrotechnical Society, 2023: 1-10[2023-05-15]. https://doi.org/10.19595/j.cnki.1000-6753.tces.221947.
[8] Nunnally W C.Critical component requirements for compact pulse power system architectures[J]. IEEE Transactions on Plasma Science, 2005, 33(4): 1262-1267.
[9] Wang Langning, Liu Jingliang.Solid-state nanosecond pulse generator using photoconductive semiconductor switch and helical pulse forming line[J]. IEEE Transactions on Plasma Science, 2017, 45(12): 3240-3245.
[10] 谌怡, 刘毅, 王卫, 等. 激光二极管触发GaAs光导开关导通特性[J]. 高电压技术, 2019, 45(1): 310-315.
Shen Yi, Liu Yi, Wang Wei, et al.On-state properties of GaAs photoconductive semiconductor switch triggered by laser diode[J]. High Voltage Engineering, 2019, 45(1): 310-315.
[11] Chowdhury A R, Ness R, Joshi R P.Assessing lock-on physics in semi-insulating GaAs and InP photoconductive switches triggered by subbandgap excitation[J]. IEEE Transactions on Electron Devices, 2018, 65(9): 3922-3929.
[12] Hu Long, Su Jiancang, Qiu Ruicheng, et al.Failure mechanism of a low-energy-triggered bulk gallium arsenide avalanche semiconductor switch: simulated analysis and experimental results[J]. IEEE Transactions on Electron Devices, 2018, 65(9): 3855-3861.
[13] 刘向向, 李志刚, 姚芳. 不同工作模式下的IGBT模块瞬态热特性退化分析[J]. 电工技术学报, 2019, 34(增刊2): 509-517.
Liu Xiangxiang, Li Zhigang, Yao Fang.Degradation analysis of transient thermal characteristics of IGBT module under different working conditions[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 509-517.
[14] Chu Xu, Xun Tao, Wang Langning, et al.Breakdown behavior of GaAs PCSS with a backside-light-triggered coplanar electrode structure[J]. Electronics, 2021, 10(3): 357.
[15] 吕安强, 李静, 张振鹏, 等. 夹具对高压绝缘电缆热学特性影响的有限元分析[J]. 电工技术学报, 2022, 37(1): 283-290.
Lü Anqiang, Li Jing, Zhang Zhenpeng, et al.Finite element analysis for the influence of clamp on the thermal characteristics of high voltage insulated power cable[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 283-290.
[16] 陈宇, 周宇, 罗皓泽, 等. 计及芯片导通压降温变效应的功率模块三维温度场解析建模方法[J]. 电工技术学报, 2021, 36(12): 2459-2470.
Chen Yu, Zhou Yu, Luo Haoze, et al.Analytical 3D temperature field model for power module considering temperature effect of semiconductor voltage drop[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2459-2470.
[17] Sun Yue, Hu Long, Li Yongdong, et al.Research on the thermal failure mechanism of an opposed-contact gallium arsenide photoconductive semiconductor switch in avalanche mode[J]. Journal of Physics D: Applied Physics, 2022, 55(21): 215103.
[18] 魏艳慧, 郑元浩, 龙海泳, 等. 绝缘层厚度对高压直流电缆电场和温度场分布的影响[J]. 电工技术学报, 2022, 37(15): 3932-3940.
Wei Yanhui, Zheng Yuanhao, Long Haiyong, et al.Influence of insulation layer thickness on electric field and temperature field of HVDC cable[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3932-3940.
[19] Mazzola M S, Schoenbach K H, Lakdawala V K, et al.Infrared quenching of conductivity at high electric fields in a bulk, copper-compensated, optically activated GaAs switch[J]. IEEE Transactions on Electron Devices, 1990, 37(12): 2499-2505.
[20] Zutavern F J, Glover S F, Mar A, et al.High Current, multi-filament photoconductive semiconductor switching[C]//2011 IEEE Pulsed Power Conference, Chicago, IL, USA, 2012: 1112-1119.
[21] Zhu K, Doğan S, Moon Y T, et al.Effect of n+-GaN subcontact layer on 4H-SiC high-power photoconductive switch[J]. Applied Physics Letters, 2005, 86(26): 261108.
[22] Xu Ming, Dong Hangtian, Liu Chun, et al.Investigation of an opposed-contact GaAs photoconductive semiconductor switch at 1-kHz excitation[J]. IEEE Transactions on Electron Devices, 2021, 68(5): 2355-2359.
[23] Okuto Y, Crowell C R.Threshold energy effect on avalanche breakdown voltage in semiconductor junctions[J]. Solid-State Electronics, 1975, 18(2): 161-168.
[24] Ma Cheng, Yang Lei, Dong Chengang, et al.An experimental study on LT-GaAs photoconductive antenna breakdown mechanism[J]. IEEE Transactions on Electron Devices, 2018, 65(3): 1043-1047. |