[1] 戴明秋. 模拟雷电流下有机涂层钢板烧蚀损伤特性和损伤机理研究[D]. 上海: 上海交通大学, 2019.
[2] 蔡力, 柯逸丰, 李进, 等. 基于高速摄像观测的风电场雷击风机发展过程和特性分析[J]. 电工技术学报, 2021, 36(增刊1): 303-310.
Cai Li, Ke Yifeng, Li Jin, et al.Development process and characteristic analysis of the natural lightning strike on wind turbine based on high-speed camera observation[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 303-310.
[3] Larsson A.The interaction between a lightning flash and an aircraft in flight[J]. Comptes Rendus Physique, 2002, 3(10): 1423-1444.
[4] Uman M A, Rakov V A.The interaction of lightning with airborne vehicles[J]. Progress in Aerospace Sciences, 2003, 39(1): 61-81.
[5] 王建国, 单飞, 周蜜, 等. 碳纤维航空复合材料雷电流A分量作用后表面形貌及电阻变化[J]. 电工技术学报, 2020, 35(增刊2): 596-602.
Wang Jianguo, Shan Fei, Zhou Mi, et al.Surface morphology and resistance change of carbon fiber aeronautical composites after lightning current component A[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 596-602.
[6] 崔德刚. 浅谈民用大飞机结构技术的发展[J]. 航空学报, 2008, 29(3): 573-582.
Cui Degang.Structure technology development of large commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 573-582.
[7] 刘亚坤, 夏海亮, 何雨微, 等. 雷击时金属油罐的损伤与温升特性[J]. 高电压技术, 2016, 42(5): 1578-1585.
Liu Yakun, Xia Hailiang, He Yuwei, et al.Ablation damage and temperature rise of metal oil tanks struck by direct lightning[J]. High Voltage Engineering, 2016, 42(5): 1578-1585.
[8] 刘亚坤, 肖瑶, 刘全桢, 等. 不同雷电流分量作用下钢合金Q235B的损伤与温升特性[J]. 中国电机工程学报, 2019, 39(20): 6131-6137, 6194.
Liu Yakun, Xiao Yao, Liu Quanzhen, et al.Damage characteristics and temperature rise of steel alloy Q235B suffered from different lightning current components[J]. Proceedings of the CSEE, 2019, 39(20): 6131-6137, 6194.
[9] 丁宁, 赵彬, 刘志强, 等. 复合材料层合板雷击烧蚀损伤模拟[J]. 航空学报, 2013, 34(2): 301-308.
Ding Ning, Zhao Bin, Liu Zhiqiang, et al.Simulation of ablation damage of composite laminates subjected to lightning strike[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 301-308.
[10] 张彬, 陈晓宁, 黄立洋, 等. 雷击对碳纤维增强型航空复合材料损伤的影响[J]. 材料工程, 2016, 44(12): 92-99.
Zhang Bin, Chen Xiaoning, Huang Liyang, et al.Effects of lightning strike on damage of aeronautical carbon fiber reinforced plastic[J]. Journal of Materials Engineering, 2016, 44(12): 92-99.
[11] 周蜜, 苏小玮, 高俊福, 等. 雷电流A分量与C分量对碳纤维复合材料损伤特性差异[J]. 电工技术学报, 2022, 37(增刊1): 297-306.
Zhou Mi, Su Xiaowei, Gao Junfu, et al.Differences in damage characteristics of lightning current components A and C to carbon fiber reinforced polymer[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 297-306.
[12] 司晓亮, 李志宝, 刘辉平, 等. 碳纤维复合材料雷电损伤预测[J]. 高电压技术, 2017, 43(5): 1453-1459.
Si Xiaoliang, Li Zhibao, Liu Huiping, et al.Lightning damage prediction of carbon fiber composite materials[J]. High Voltage Engineering, 2017, 43(5): 1453-1459.
[13] 孙晋茹, 姚学玲, 许雯珺, 等. 雷电流分量对碳纤维增强型复合材料层合板的雷击损伤效应[J]. 高电压技术, 2019, 45(12): 3836-3843.
Sun Jinru, Yao Xueling, Xu Wenjun, et al.Lightning damage effects of lightning current components on carbon fiber reinforced polymer laminates[J]. High Voltage Engineering, 2019, 45(12): 3836-3843.
[14] 熊秀, 骆立峰, 范晓宇, 等. 飞机雷电直接效应综述[J]. 飞机设计, 2011, 31(4): 64-68.
Xiong Xiu, Luo Lifeng, Fan Xiaoyu, et al.The direct effects of lightning on aircraft[J]. Aircraft Design, 2011, 31(4): 64-68.
[15] 姚学玲, 郭灿阳, 孙晋茹, 等. 碳纤维复合材料在雷电流作用下的损伤仿真与试验[J]. 高电压技术, 2017, 43(5): 1400-1408.
Yao Xueling, Guo Canyang, Sun Jinru, et al.Damage simulation and experiment of carbon fiber composites subjected to lightning current[J]. High Voltage Engineering, 2017, 43(5): 1400-1408.
[16] 肖慈恩, 刘亚坤. 长持续时间雷电流电弧下材料损伤的电-磁-热-力耦合分析[J]. 中国电机工程学报, 2022, 42(22): 8382-8390.
Xiao Cien, Liu Yakun.Electromagnetic-thermal-mechanical coupling analysis on damage of material inflicted by long continuing current in direct lightning strike[J]. Proceedings of the CSEE, 2022, 42(22): 8382-8390.
[17] Ogasawara T, Hirano Y, Yoshimura A.Coupled thermal-electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(8): 973-981.
[18] Abdelal G, Murphy A.Nonlinear numerical modelling of lightning strike effect on composite panels with temperature dependent material properties[J]. Composite Structures, 2014, 109: 268-278.
[19] Foster P, Abdelal G, Murphy A.Understanding how arc attachment behaviour influences the prediction of composite specimen thermal loading during an artificial lightning strike test[J]. Composite Structures, 2018, 192: 671-683.
[20] Wang Y, Zhupanska O I.Lightning strike thermal damage model for glass fiber reinforced polymer matrix composites and its application to wind turbine blades[J]. Composite Structures, 2015, 132: 1182-1191.
[21] Capitelli M, Colonna G, Gorse C, et al.Transport properties of high temperature air in local thermodynamic equilibrium[J]. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2000, 11(2): 279-289.
[22] Millen S L J, Ashworth S, Farrell C, et al. Understanding and representing heating and heating rate effects on composite material properties for lightning strike direct effect simulations[J]. Composites Part B: Engineering, 2022, 228: 109438.
[23] 刘亚坤, 戴明秋, 肖瑶, 等. 雷电流作用下金属损伤试验的影响因素[J]. 高电压技术, 2017, 43(5): 1445-1452.
Liu Yakun, Dai Mingqiu, Xiao Yao, et al.Influence factors of metal materials struck by simulated lightning currents[J]. High Voltage Engineering, 2017, 43(5): 1445-1452.
[24] 刘亚坤, 戴明秋, 毕晓蕾, 等. 三种冲击电流连续作用下铝3003合金的损伤特性[J]. 电工技术学报, 2020, 35(6): 1173-1180.
Liu Yakun, Dai Mingqiu, Bi Xiaolei, et al.Damage characteristics of Al alloy 3003 suffered from three continuous impulse currents[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1173-1180. |