[1] 国务院. 国务院关于印发2030年前碳达峰行动方案的通知[Z/OL]. (2021-10-24). http://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm.
[2] 国务院办公厅. 国务院办公厅关于印发新能源汽车产业发展规划(2021—2035年)的通知[Z/OL]. (2020-10-20). http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm.
[3] 中国氢能源行业发展前景预测与投资战略规划分析报告[R]. https://bg.qianzhan.com/report/detail/1607281732570984.html?v=title.
[4] 陈中, 陈妍希, 车松阳. 新能源汽车一体充能站框架及能量优化调度方法[J]. 电力系统自动化, 2019, 43(24): 41-49.
Chen Zhong, Chen Yanxi, Che Songyang.Framework of integrated charging station for renewable energy vehicle and energy optimal dispatching method[J]. Automation of Electric Power Systems, 2019, 43(24): 41-49.
[5] 王海鑫, 袁佳慧, 陈哲, 等. 智慧城市车-站-网一体化运行关键技术研究综述及展望[J]. 电工技术学报, 2022, 37(1): 112-132.
Wang Haixin, Yuan Jiahui, Chen Zhe, et al.Review and prospect of key techniques for vehicle-station-network integrated operation in smart city[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 112-132.
[6] 毛玲, 张钟浩, 赵晋斌, 等. 车-桩-网交融技术研究现状及展望[J]. 电工技术学报, 2022, 37(24): 6357-6371.
Mao Ling, Zhang Zhonghao, Zhao Jinbin, et al.Research status and prospects of fusion technology of vehicle-charging pile-power grid[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6357-6371.
[7] 翁菖宏, 胡志坚, 刘妍, 等. 计及互联调控的新能源汽车一体化供能站规划[J]. 智慧电力, 2021, 49(9): 24-31, 94.
Weng Changhong, Hu Zhijian, Liu Yan, et al.Integrated power supply station planning of new energy vehicles with interconnection control[J]. Smart Power, 2021, 49(9): 24-31, 94.
[8] Cao Xiaoyu, Sun Xunhang, Xu Zhanbo, et al.Hydrogen-based networked microgrids planning through two-stage stochastic programming with mixed-integer conic recourse[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(4): 3672-3685.
[9] 侯慧, 刘鹏, 黄亮, 等. 考虑不确定性的电-热-氢综合能源系统规划[J]. 电工技术学报, 2021, 36(增刊1): 133-144.
Hou Hui, Liu Peng, Huang Liang, et al.Planning of electricity-heat-hydrogen integrated energy system considering uncertainties[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 133-144.
[10] Liu Jia, Cao Sunliang, Chen Xi, et al.Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage[J]. Applied Energy, 2021, 281: 116038.
[11] 李珂, 邵成成, 王雅楠, 等. 考虑电-气-交通耦合的城市综合能源系统规划[J]. 中国电机工程学报, 2023, 43(6): 2263-2273.
Li Ke, Shao Chengcheng, Wang Yanan, et al.Optimal planning of urban integrated energy systems considering electricity-gas-transportation interactions[J]. Proceedings of the CSEE, 2023, 43(6): 2263-2273.
[12] 袁铁江, 计力, 田雪沁, 等. 考虑燃料电池汽车加氢负荷的电-氢系统协同优化运行[J]. 电力系统自动化, 2023, 47(5): 16-25.
Yuan Tiejiang, Ji Li, Tian Xueqin, et al.Synergistic optimal operation of electricity-hydrogen systems considering hydrogen refueling loads for fuel cell vehicles[J]. Automation of Electric Power Systems, 2023, 47(5): 16-25.
[13] 闫佳佳, 滕云, 邱实, 等. 计及供能可靠性动态约束与碳减排的充能型微电网互联系统优化模型[J]. 电工技术学报, 2022, 37(23): 5956-5975.
Yan Jiajia, Teng Yun, Qiu Shi, et al.Optimization model of charging microgrid interconnection system considering dynamic constraints of energy supply reliability and carbon emission reduction[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 5956-5975.
[14] Ran Cuiling, Zhang Yanzi, Yin Ying.Demand response to improve the shared electric vehicle planning: managerial insights, sustainable benefits[J]. Applied Energy, 2021, 292: 116823.
[15] Aliasghari P, Mohammadi-Ivatloo B, Alipour M, et al.Optimal scheduling of plug-in electric vehicles and renewable micro-grid in energy and reserve markets considering demand response program[J]. Journal of Cleaner Production, 2018, 186: 293-303.
[16] Salyani P, Abapour M, Zare K.Stackelberg based optimal planning of DGs and electric vehicle parking lot by implementing demand response program[J]. Sustainable Cities and Society, 2019, 51: 101743.
[17] Shojaabadi S, Abapour S, Abapour M, et al.Optimal planning of plug-in hybrid electric vehicle charging station in distribution network considering demand response programs and uncertainties[J]. IET Generation, Transmission & Distribution, 2016, 10(13): 3330-3340.
[18] 程妤. 基于心理账户的共享汽车出行选择行为研究[D]. 重庆: 重庆交通大学, 2020.
[19] 程瑜, 邰宇峰, 丁肇豪, 等. 基于网络流的共享电动汽车优化调度[J]. 电工技术学报, 2022, 37(增刊1): 145-152.
Cheng Yu, Tai Yufeng, Ding Zhaohao, et al.Optimal scheduling of sharing electric vehicles based on network flow[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 145-152.
[20] 王亮. 考虑个体异质性的新能源汽车分时租赁出行选择行为研究[D]. 成都: 西南交通大学, 2020.
[21] Fan Jingli, Wang Jiaxing, Zhang Xian.An innovative subsidy model for promoting the sharing of Electric Vehicles in China: a pricing decisions analysis[J]. Energy, 2020, 201: 117557.
[22] Wang Yue, Yao Enjian, Pan Long.Electric vehicle drivers’ charging behavior analysis considering heterogeneity and satisfaction[J]. Journal of Cleaner Production, 2021, 286: 124982.
[23] Wu Fuzhang, Yang Jun, Zhan Xiangpeng, et al.The online charging and discharging scheduling potential of electric vehicles considering the uncertain responses of users[J]. IEEE Transactions on Power Systems, 2021, 36(3): 1794-1806.
[24] 冰雪. 考虑供需时空特征的共享电动汽车差异化定价研究[D]. 长春: 吉林大学, 2022.
[25] 姬杨蓓蓓, 陈欣萌, 成枫. 考虑排放成本的共享电动汽车和共享停车位最优组合定价研究[J]. 管理工程学报, 2022, 36(1): 134-145.
Ji Yangbeibei, Chen Xinmeng, Cheng Feng.Research on optimal pricing of shared vehicles and shared parking considering traffic emission cost[J]. Journal of Industrial Engineering and Engineering Management, 2022, 36(1): 134-145.
[26] Zeynali S, Nasiri N, Marzband M, et al.A hybrid robust-stochastic framework for strategic scheduling of integrated wind farm and plug-in hybrid electric vehicle fleets[J]. Applied Energy, 2021, 300: 117432.
[27] Kou Xiao, Li Fangxing.Interval optimization for available transfer capability evaluation considering wind power uncertainty[J]. IEEE Transactions on Sustainable Energy, 2020, 11(1): 250-259.
[28] Daryabari M K, Keypour R, Golmohamadi H.Robust self-scheduling of parking lot microgrids leveraging responsive electric vehicles[J]. Applied Energy, 2021, 290: 116802.
[29] Tan Jun, Wang Lingfeng.Integration of plug-in hybrid electric vehicles into residential distribution grid based on two-layer intelligent optimization[J]. IEEE Transactions on Smart Grid, 2014, 5(4): 1774-1784.
[30] Lu Xinhui, Zhou Kaile, Yang Shanlin, et al.Multi-objective optimal load dispatch of microgrid with stochastic access of electric vehicles[J]. Journal of Cleaner Production, 2018, 195: 187-199.
[31] Khezri R, Mahmoudi A, Haque M H.Impact of optimal sizing of wind turbine and battery energy storage for a grid-connected household with/without an electric vehicle[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 5838-5848.
[32] 陆剑清. 现代消费行为学[M]. 北京: 北京大学出版社, 2013.
[33] 梅生伟, 刘锋, 魏韡. 工程博弈论基础及电力系统应用[M]. 北京: 科学出版社, 2016.
[34] 杨雄. 分时租赁电动汽车运行数据驱动的充/换电设施布局研究[D]. 北京: 北京交通大学, 2020.
[35] Ahn H, Rim D, Pavlak G S, et al.Uncertainty analysis of energy and economic performances of hybrid solar photovoltaic and combined cooling, heating, and power (CCHP+PV) systems using a Monte-Carlo method[J]. Applied Energy, 2019, 255: 113753.
[36] Mei Fei, Zhang Jiatang, Lu Jixiang, et al.Stochastic optimal operation model for a distributed integrated energy system based on multiple-scenario simulations[J]. Energy, 2021, 219: 119629.
[37] Farham H, Mohammadian L, Alipour H, et al.Energy procurement of large industrial consumer via interval optimization approach considering peak demand management[J]. Sustainable Cities and Society, 2019, 46: 101421.
[38] Sengupta A, Pal T K.On comparing interval numbers[J]. European Journal of Operational Research, 2000, 127(1): 28-43.
[39] Liu Yangyang, Jiang Chuanwen, Shen Jingshuang, et al.Coordination of hydro units with wind power generation using interval optimization[J]. IEEE Transactions on Sustainable Energy, 2015, 6(2): 443-453.
[40] Pan Guangsheng, Gu Wei, Qiu Haifeng, et al.Bi-level mixed-integer planning for electricity-hydrogen integrated energy system considering levelized cost of hydrogen[J]. Applied Energy, 2020, 270: 115176.
[41] Dong Xiangxiang, Wu Jiang, Xu Zhanbo, et al.Optimal coordination of hydrogen-based integrated energy systems with combination of hydrogen and water storage[J]. Applied Energy, 2022, 308: 118274.
[42] Zhong Xiaoqing, Zhong Weifeng, Liu Yi, et al.Cooperative operation of battery swapping stations and charging stations with electricity and carbon trading[J]. Energy, 2022, 254: 124208.
[43] Zhang Xizheng, Wang Zeyu, Lu Zhangyu.Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm[J]. Applied Energy, 2022, 306: 118018.
[44] Li Junjie, Cheng Wanjing.Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification[J]. International Journal of Hydrogen Energy, 2020, 45(51): 27979-27993.
[45] Jiang Qian, Mu Yunfei, Jia Hongjie, et al.A Stackelberg Game-based planning approach for integrated community energy system considering multiple participants[J]. Energy, 2022, 258: 124802.
[46] Mu Yunfei, Chen Wanqing, Yu Xiaodan, et al.A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies[J]. Applied Energy, 2020, 279: 115700.
[47] Isaac N, Saha A K.Analysis of refueling behavior of hydrogen fuel vehicles through a stochastic model using Markov Chain Process[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110761.
[48] Li Jiale, Liu Zhenbo, Wang Xuefei.Public charging station localization and route planning of electric vehicles considering the operational strategy: a bi-level optimizing approach[J]. Sustainable Cities and Society, 2022, 87: 104153. |