|
|
Analytical Inverse Preisach Hysteresis Model |
Liu Ren1,2, Du Yingxue3, Li Lin4, Tang Bo1,2 |
1. Hubei Provincial Engineering Technology Research Center for Power Transmission Line China Three Gorges University Yichang 443002 China; 2. College of Electrical Engineering and New Energy China Three Gorges University Yichang 443002 China; 3. Huawei Beijing R&D Centre Beijing 100085 China; 4. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China |
|
|
Abstract The complex nonlinear hysteresis characteristics of soft magnetic materials significantly impact the energy losses, multi-physics field, and other properties of electrical equipment. Thus, it is crucial to accurately simulate the hysteresis loops of the soft magnetic materials. Under this circumstance, many hysteresis models, such as the well-known Preisach and Jiles-Atherton (J-A) models, have been developed. As the FEA problem of the electrical equipment is usually formulated by magnetic vector potential, making the magnetic flux density B the output of the differential equations, the inverse hysteresis models are more in demand. The inverse Preisach model is usually viewed as the most accurate among all the inverse hysteresis models. However, it involves complex integral operations, so its computation cost is high. As a result, it is not practical in electrical engineering, which makes the accurate analytical inverse Preisach model inheriting low computation cost more desired. In this paper, to our knowledge, an analytical inverse Preisach model, the only one among all of the Preisach models, is developed and proposed. Firstly, the analytical expressions of permeability of the initial magnetization curve, ascending and descending segments of the hysteresis loop are obtained using our proposed analytical forward Preisach hysteresis model based on the analytical Everett function. The analytical inverse Preisach hysteresis model, as shown in Eq.(1), is derived with the difference method. A grain-oriented silicon steel sample and a non-oriented silicon steel sample are selected to measure their hysteresis loops at different flux density levels. The simulated hysteresis loops and the measured ones are compared. It is shown that the predicted hysteresis loops agree with the measured ones. Additionally, each calculated hysteresis loss (the area enclosed by the corresponding simulated hysteresis loop) is compared with the measured one, which also tests the accuracy of our proposed model. Besides, the average relative error of the analytical inverse Preisach model is smaller than that of the inverse J-A model by more than 10%, and its computation speed is approximately 2.67 times faster than that of the inverse J-A model. $H(t+\Delta t)=\left\{ \begin{array}{*{35}{l}} H(t)+\frac{B(t+\Delta t)-B(t)}{\sum\limits_{i=1}^{n}{\frac{2\alpha _{i}^{2}{{\text{e}}^{-{{\beta }_{i}}H(t)}}}{{{\beta }_{i}}{{\gamma }_{i}}{{\left( 1+{{\gamma }_{i}}{{\text{e}}^{-{{\beta }_{i}}H(t)}} \right)}^{2}}}}\left( \frac{1}{1+{{\gamma }_{i}}{{\text{e}}^{-{{\beta }_{i}}H(t)}}}-\frac{1}{1+{{\gamma }_{i}}{{\text{e}}^{{{\beta }_{i}}H(t)}}} \right)+{{k}_{1}}+\frac{{{k}_{2}}}{{{k}_{3}}}\left[ 1-{{\tanh }^{2}}\left( \frac{H(t)}{{{k}_{3}}} \right) \right]} & {{H}_{\text{m}}}\text{=0 and }{{B}_{\text{m}}} & \text{=0} \\ H(t)+\frac{B(t+\Delta t)-B(t)}{\sum\limits_{i=1}^{n}{\frac{-2\alpha _{i}^{2}{{\text{e}}^{{{\beta }_{i}}H(t)}}}{{{\beta }_{i}}{{\gamma }_{i}}{{\left( 1+{{\gamma }_{i}}{{\text{e}}^{{{\beta }_{i}}H(t)}} \right)}^{2}}}}\left( \frac{1}{1+{{\gamma }_{i}}{{\text{e}}^{-{{\beta }_{i}}H(t)}}}-\frac{1}{1+{{\gamma }_{i}}{{\text{e}}^{-{{\beta }_{i}}{{H}_{\text{m}}}}}} \right)+{{k}_{1}}+\frac{{{k}_{2}}}{{{k}_{3}}}\left[ 1-{{\tanh }^{2}}\left( \frac{H(t)}{{{k}_{3}}} \right) \right]} & H\le {{H}_{\text{m}}} \\ H(t)+\frac{B(t+\Delta t)-B(t)}{\sum\limits_{i=1}^{n}{\frac{2\alpha _{i}^{2}{{\text{e}}^{-{{\beta }_{i}}H(t)}}}{{{\beta }_{i}}{{\gamma }_{i}}{{\left( 1+{{\gamma }_{i}}{{\text{e}}^{-{{\beta }_{i}}H(t)}} \right)}^{2}}}}\left( \frac{1}{1+{{\gamma }_{i}}{{\text{e}}^{{{\beta }_{i}}{{H}_{\text{m}}}}}}-\frac{1}{1+{{\gamma }_{i}}{{\text{e}}^{{{\beta }_{i}}H(t)}}} \right)+{{k}_{1}}+\frac{{{k}_{2}}}{{{k}_{3}}}\left[ 1-{{\tanh }^{2}}\left( \frac{H(t)}{{{k}_{3}}} \right) \right]} & H{{H}_{\text{m}}} \\ \end{array} \right.$ (A1) where αi, βi, γi, k1 ,k2, k3 are the model coefficients, n is the number of items in Everett function, Hm and Bm are the last reversal magnetic field intensity and magnetic flux density, respectively.
|
Received: 29 March 2022
|
|
|
|
|
[1] 赵小军, 王瑞, 杜振斌, 等. 交直流混合激励下取向硅钢片磁滞及损耗特性模拟方法[J]. 电工技术学报, 2021, 36(13): 2791-2800. Zhao Xiaojun, Wang Rui, Du Zhenbin, et al.Hysteretic and loss modeling of grain oriented silicon steel lamination under AC-DC hybrid magneti- zation[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2791-2800. [2] 赵小军, 曹越芝, 刘兰荣, 等. 交直流混合激励下变压器用叠片式磁构件杂散损耗问题的数值模拟及实验验证[J]. 电工技术学报, 2021, 36(1): 141-150. Zhao Xiaojun, Cao Yuezhi, Liu Lanrong, et al.Numerical simulation and experimental verification of stray loss of laminated magnetic components for transformers under AC-DC hybrid excitation[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 141-150. [3] 赵志刚, 徐曼, 胡鑫剑. 基于改进损耗分离模型的铁磁材料损耗特性研究[J]. 电工技术学报, 2021, 36(13): 2782-2790. Zhao Zhigang, Xu Man, Hu Xinjian.Research on magnetic losses characteristics of ferromagnetic materials based on improvement loss separation model[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2782-2790. [4] 刘任, 李琳. 基于场分离技术与损耗统计理论的动态Energetic磁滞模型[J]. 中国电机工程学报, 2019, 39(增刊): 6412-6418. Liu Ren, Li Lin.Dynamic energetic hysteresis model based on field separation technology and loss statistics theory[J]. Proceedings of the CSEE, 2019, 39(S): 6412-6418. [5] Luo Min, Dujic D, Allmeling J.Modeling frequency- dependent core loss of ferrite materials using permeance-capacitance analogy for system-level circuit simulations[J]. IEEE Transactions on Power Electronics, 2019, 34(4): 3658-3676. [6] Dlala E.Efficient algorithms for the inclusion of the Preisach hysteresis model in nonlinear finite-element methods[J]. IEEE Transactions on Magnetics, 2011, 47(2): 395-408. [7] de la Barrière O, Ragusa C, Appino C, et al. Prediction of energy losses in soft magnetic materials under arbitrary induction waveforms and DC bias[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2522-2529. [8] 李伊玲, 李琳, 刘任, 等. 基于非均匀单元离散法的静态逆Preisach模型分布函数辨识[J]. 中国电机工程学报, 2021, 41(15): 5340-5351. Li Yiling, Li Lin, Liu Ren, et al.The non-uniform element discretization method for identifying dis- tribution function of static inverse Preisach model[J]. Proceedings of the CSEE, 2021, 41(15): 5340-5351. [9] Liu Ren, Li Lin.Analytical prediction model of energy losses in soft magnetic materials over broadband frequency range[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 2009-2017. [10] Bi Shasha, Sutor A, Lerch R, et al.An efficient inverted hysteresis model with modified switch operator and differentiable weight function[J]. IEEE Transactions on Magnetics, 2013, 49(7): 3175-3178. [11] Bi Shasha, Wolf F, Lerch R, et al.An inverted Preisach model with analytical weight function and its numerical discrete formulation[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4. [12] Zirka S E, Moroz Y I, Harrison R G, et al.Inverse hysteresis models for transient simulation[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 552-559. [13] Mayergoyz I.Mathematical models of hysteresis[J]. IEEE Transactions on Magnetics, 1986, 22(5): 603-608. [14] 刘任, 李琳, 乔光尧, 等. 考虑偏置小磁滞回环的非正弦激励下磁性材料损耗计算方法[J]. 中国电机工程学报, 2020, 40(19): 6093-6103. Liu Ren, Li Lin, Qiao Guangyao, et al.Calculation method of magnetic material losses under non- sinusoidal excitation considering the biased minor loops[J]. Proceedings of the CSEE, 2020, 40(19): 6093-6103. [15] 赵小军, 刘小娜, 肖帆, 等. 基于Preisach模型的取向硅钢片直流偏磁磁滞及损耗特性模拟[J]. 电工技术学报, 2020, 35(9): 1849-1857. Zhao Xiaojun, Liu Xiaona, Xiao Fan, et al.Hysteretic and loss modeling of silicon steel sheet under the DC biased magnetization based on the Preisach model[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1849-1857. [16] Li Zhi, Shan Jinjun, Gabbert U.Inverse compensator for a simplified discrete Preisach model using model- order reduction approach[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6170-6178. [17] Szabó Z.Preisach functions leading to closed form permeability[J]. Physica B: Condensed Matter, 2006, 372(1/2): 61-67. [18] Szabó Z, Füzi J.Implementation and identification of Preisach type hysteresis models with Everett Function in closed form[J]. Journal of Magnetism and Magnetic Materials, 2016, 406: 251-258. [19] Fallah E, Badeli V.A new approach for modeling of hysteresis in 2-D time-transient analysis of eddy current using FEM[J]. IEEE Transactions on Mag- netics, 2017, 53(7): 1-14. [20] Cao Yue, Xu Ke, Jiang Weilin, et al.Hysteresis in single and polycrystalline iron thin films: major and minor loops, first order reversal curves, and Preisach modeling[J]. Journal of Magnetism and Magnetic Materials, 2015, 395: 361-375. [21] Sadowski N, Batistela N J, Bastos J P A, et al. An inverse Jiles-Atherton model to take into account hysteresis in time-stepping finite-element calcula- tions[J]. IEEE Transactions on Magnetics, 2002, 38(2): 797-800. [22] Cardelli E, Torre E D, Tellini B.Direct and inverse Preisach modeling of soft materials[J]. IEEE Transa- ctions on Magnetics, 2000, 36(4): 1267-1271. [23] 刘任, 杜莹雪, 李琳, 等. 解析正Preisach磁滞模型的推导与修正[J]. 中国电机工程学报, 2023, 43(5): 2070-2079. Liu Ren, Du Yingxue, Li Lin, et al.Derivation and modification of analytical forward Preisach hysteresis model[J]. Proceedings of the CSEE, 2023, 43(5): 2070-2079. [24] 刘任, 李琳, 王亚琦, 等. 基于随机性与确定性混合优化算法的Jiles-Atherton磁滞模型参数提取[J]. 电工技术学报, 2019, 34(11): 2260-2268. Liu Ren, Li Lin, Wang Yaqi, et al.Parameter extraction for Jiles-Atherton hysteresis model based on the hybrid technique of stochastic and deter- ministic optimization algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2260-2268. [25] Liu Ren, Li Lin.Accurate symmetrical minor loops calculation with a modified energetic hysteresis model[J]. IEEE Transactions on Magnetics, 2020, 56(3): 1-4. |
|
|
|