[1] 王涛, 诸自强, 年珩. 非理想电网下双馈风力发电系统运行技术综述[J]. 电工技术学报, 2020, 35(3): 455-471.
Wang Tao, Zhu Ziqiang, Nian Heng.Review of operation technology of doubly-fed induction generator-based wind power system under nonideal grid conditions[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 455-471.
[2] 徐海亮, 吴瀚, 李志, 等. 低短路比电网下含负序控制双馈风机稳定性研究的几个关键问题[J]. 电工技术学报, 2021, 36(22): 4688-4702.
Xu Hailiang, Wu Han, Li Zhi, et al.Several key issues on stability study of DFIG-based wind turbines with negative sequence control during low short-circuit ratio power grids[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4688-4702.
[3] 蔡旭, 杨仁炘, 周剑桥, 等. 海上风电直流送出与并网技术综述[J]. 电力系统自动化, 2021, 45(21): 2-22.
Cai Xu, Yang Renxin, Zhou Jianqiao, et al.Review on offshore wind power integration via DC transmission[J]. Automation of Electric Power Systems, 2021, 45(21): 2-22.
[4] 颜湘武, 王德胜, 杨琳琳, 等. 直驱风机惯量支撑与一次调频协调控制策略[J]. 电工技术学报, 2021, 36(15): 3282-3292.
Yan Xiangwu, Wang Desheng, Yang Linlin, et al.Coordinated control strategy of inertia support and primary frequency regulation of PMSG[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3282-3292.
[5] 杨光亚. 欧洲海上风电工程实践回顾及未来技术展望[J]. 电力系统自动化, 2021, 45(21): 23-32.
Yang Guangya.Review on engineering practices and future technology prospects of European offshore wind power[J]. Automation of Electric Power Systems, 2021, 45(21): 23-32.
[6] 姜磊, 高景晖, 钟力生, 等. 远海漂浮式海上风电平台用动态海缆的发展[J]. 高压电器, 2022, 58(01): 1-11.
Jiang Lei, Gao Jinghui, Zhong Lisheng, et al.Development of dynamic submarine cable for offshore floating wind power platforms[J]. High Voltage Apparatus, 2022, 58(01): 1-11.
[7] 蔡国伟, 雷宇航, 葛维春, 等. 高寒地区风电机组雷电防护研究综述[J]. 电工技术学报, 2019, 34(22): 4804-4815.
Cai Guowei, Lei Yuhang, Ge Weichun, et al.Review of research on lightning protection for wind turbines in alpine areas[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4804-4815.
[8] 胡琴, 杨大川, 蒋兴良, 等. 叶片模拟冰对风力发电机功率特性影响的试验研究[J]. 电工技术学报, 2020, 35(22): 4807-4815.
Hu Qin, Yang Dachuan, Jiang Xingliang, et al.Experimental study on the effect of blade simulated icing on power characteristics of wind turbine[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4807-4815.
[9] Yu Songsong, Zhang Dayong, Wang Shuaifei, et al.Field monitoring of offshore wind turbine foundations in ice regions[J]. Journal of Coastal Research, 2020, 104(sp1): 343-350 [10] Parent O, Ilinca A. Anti-icing and de-icing techniques for wind turbines: Critical review[J]. Cold Regions Science & Technology, 2010, 65(1): 88-96.
[11] Jiang Guo, Chen Liang, Zhang Shuidong, et al.Superhydrophobic SiC/CNTs coatings with photothermal deicing and passive anti-icing properties[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36505-36511.
[12] Gao Shuhui, Liu Bo, Peng Jie, et al.Icephobic durability of branched PDMS slippage coatings Cocross- linked by functionalized POSS[J]. ACS Applied Materials & Interfaces, 2019, 11(4): 4654-4666.
[13] Yu Yadong, Chen Lei, Weng Ding, et al.A promising self-assembly PTFE coating for effective large-scale deicing[J]. Progress in Organic Coatings, 2020, 147: 105732.
[14] Mayer C, Ilinca A, Fortin G, et al.Wind tunnel study of electro-thermal de-icing of wind turbine blades[J]. International Journal of Offshore and Polar Engineering, 2007, 17(3): 182-188.
[15] Luo Yongshui, Liu Jian, Chen Qi, et al.Research control strategy of hot air blower de-icing system for MW wind turbine blade[J]. International Conference on Renewable Energy & Environmental Technology, 2017, 112:275-284.
[16] Jiang Xingliang, Wang Yangyang.Studies on the electro-impulse de-icing system of aircraft[J]. Aerospace, 2019, 6(6): 67.
[17] Palacios J, Wolfe D, Bailey M, et al.Ice testing of a centrifugally powered pneumatic deicing system for helicopter rotor blades[J]. Journal of the American Helicopter Society, 2015, 60(3): 1-12.
[18] Weisend N A Jr. Design of an advanced pneumatic deicer for the composite rotor blade[J]. Journal of Aircraft, 1989, 26(10): 947-950.
[19] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 22315—2008 金属材料弹性模量和泊松比试验方法[S]. 北京: 中国标准出版社, 2009.
[20] Plastics — Determination of flexural properties:ISO 178-2019[S]. ISO, 2019.4.
[21] 唐静静, 范钦珊. 工程力学:静力学和材料力学[M]. 3 版. 北京: 高等教育出版社, 2017. |