[1] 王宾, 崔鑫, 董新洲. 配电线路弧光高阻故障检测技术综述[J]. 中国电机工程学报, 2020, 40(1): 96-107, 377.
Wang Bin, Cui Xin, Dong Xinzhou.Overview of arc high impedance grounding fault detection technologies in distribution system[J]. Proceedings of the CSEE, 2020, 40(1): 96-107, 377.
[2] 邓丰, 徐帆, 冯思旭, 等. 基于行波全波形能量分布特征的高阻接地故障检测方法[J]. 中国电机工程学报, 2022, 42(22): 8177-8190.
Deng Feng, Xu Fan, Feng Sixu, et al.High-resistance grounding fault detection method based on energy distribution characteristics of traveling wave full waveform[J]. Proceedings of the CSEE, 2022, 42(22): 8177-8190.
[3] 喻锟, 胥鹏博, 曾祥君, 等. 基于模糊测度融合诊断的配电网接地故障选线[J]. 电工技术学报, 2022, 37(3): 623-633.
Yu Kun, Xu Pengbo, Zeng Xiangjun, et al.Grounding fault line selection of distribution networks based on fuzzy measures integrated diagnosis[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 623-633.
[4] 邓丰, 梅龙军, 唐欣, 等. 基于时频域行波全景波形的配电网故障选线方法[J]. 电工技术学报, 2021, 36(13): 2861-2870.
Deng Feng, Mei Longjun, Tang Xin, et al.Faulty line selection method of distribution network based on time-frequency traveling wave panoramic waveform[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2861-2870.
[5] 王建元, 朱永涛, 秦思远. 基于方向行波能量的小电流接地系统故障选线方法[J]. 电工技术学报, 2021, 36(19): 4085-4096.
Wang Jianyuan, Zhu Yongtao, Qin Siyuan.Fault line selection method for small current grounding system based on directional traveling wave energy[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4085-4096.
[6] 国网陕西电力公司. 6·18西安变电站爆炸事故报告[R]. 西安: 国网陕西电力公司, 2016.
[7] 邵庆祝, 崔鑫, 谢民, 等. 弧光高阻接地故障建模及数据修正算法[J]. 电力系统自动化, 2021, 45(11): 120-125.
Shao Qingzhu, Cui Xin, Xie Min, et al.Modeling and data correction algorithm for arc high resistance grounding fault[J]. Automation of Electric Power Systems, 2021, 45(11): 120-125.
[8] 龙毅, 欧阳金鑫, 熊小伏, 等. 基于零序功率变化量的配电网单相高阻接地保护[J]. 电工技术学报, 2019, 34(17): 3687-3695.
Long Yi, Ouyang Jinxin, Xiong Xiaofu, et al.Protection principle of single-phase high resistance fault for distribution network based on zero-sequence power variation[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3687-3695.
[9] 薛永端, 汪洋, 徐丙垠. 小电阻接地系统高灵敏度阶段式零序过电流保护[J]. 中国电机工程学报, 2020, 40(19): 6217-6227.
Xue Yongduan, Wang Yang, Xu Bingyin.High sensitive zero-sequence stage current protection for low-resistance grounding system[J]. Proceedings of the CSEE, 2020, 40(19): 6217-6227.
[10] Mayr O.Beiträge zur theorie des statischen und des dynamischen lichtbogens[J]. Archiv Für Elektrotechnik, 1943, 37(12): 588-608.
[11] Cassie A M.Arc rupture and circuit severity: a new theory[R]. Paris, France: CIGRE Report No. 102, 1939: 1-16.
[12] 李露露, 李永培, 周新月, 等. 10kV交联聚乙烯电缆内部多形态间歇性电弧故障建模[J]. 电工技术学报, 2022, 37(23): 6104-6115.
Li Lulu, Li Yongpei, Zhou Xinyue, et al.Modeling of multi-modality intermittent arc fault in 10kV XLPE cable[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6104-6115.
[13] 杨明波, 龙毅, 樊三军, 等. 基于组合Mayr和Cassie电弧模型的弧光接地故障仿真及分析[J]. 电测与仪表, 2019, 56(10): 8-13.
Yang Mingbo, Long Yi, Fan Sanjun, et al.Simulation and analysis of arc grounding fault based on combined Mayr and Cassie arc models[J]. Electrical Measurement & Instrumentation, 2019, 56(10): 8-13.
[14] 刘艳丽, 郭凤仪, 李磊, 等. 一种串联型故障电弧数学模型[J]. 电工技术学报, 2019, 34(14): 2901-2912.
Liu Yanli, Guo Fengyi, Li Lei, et al.A kind of series fault arc mathematical model[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 2901-2912.
[15] Jeerings D I, Linders J R.Unique aspects of distribution system harmonics due to high impedance ground faults[J]. IEEE Transactions on Power Delivery, 1990, 5(2): 1086-1094.
[16] 孙月琴, 倪江, 王宾, 等. 应用于输电线路单端测距的高阻接地故障电弧模型分析[J]. 电力系统自动化, 2016, 40(22): 86-92.
Sun Yueqin, Ni Jiang, Wang Bin, et al.Transmission line high-impedance fault modeling analysis for single-end fault location[J]. Automation of Electric Power Systems, 2016, 40(22): 86-92.
[17] 王宾, 梁晨光, 李凤婷. 计及间隙长度的弧光接地故障建模及单端测距[J]. 中国电机工程学报, 2019, 39(4): 1001-1009.
Wang Bin, Liang Chenguang, Li Fengting.Arc modeling and single-end fault location for arc grounding fault in transmission line considering arc gap length[J]. Proceedings of the CSEE, 2019, 39(4): 1001-1009.
[18] 王宾, 耿建昭, 董新洲. 基于介质击穿原理的配电线路高阻接地故障精确建模[J]. 电力系统自动化, 2014, 38(12): 62-66, 106.
Wang Bin, Geng Jianzhao, Dong Xinzhou.High-impedance fault modeling based on solid dielectric electrical breakdown theory[J]. Automation of Electric Power Systems, 2014, 38(12): 62-66, 106.
[19] 张杨珠, 周清, 黄运湘, 等. 湖南土壤分类的研究概况与展望[J]. 湖南农业科学, 2014(9): 31-34, 38.
Zhang Yangzhu, Zhou Qing, Huang Yunxiang, et al.General situations and prospects of soil classification in Hunan Province[J]. Hunan Agricultural Sciences, 2014(9): 31-34, 38.
[20] 陈先禄, 刘渝根, 黄勇. 接地[M]. 重庆: 重庆大学出版社, 2002.
[21] 赵玉林. 高电压技术[M]. 北京: 中国电力出版社, 2008.
[22] 梁曦东, 陈昌渔, 周远翔. 高电压工程[M]. 北京: 清华大学出版社, 2003.
[23] 冯允平. 高电压技术中的气体放电及其应用[M]. 北京: 水利电力出版社, 1990.
[24] 李润昌, 刘洪顺, 娄杰, 等. 特高压无补偿线路潜供电弧电气特征与弧柱形态[J]. 高电压技术, 2018, 44(4): 1359-1366.
Li Runchang, Liu Hongshun, Lou Jie, et al.Investigation on electrical characteristics and arc column morphology of secondary arc on UHV transmission lines[J]. High Voltage Engineering, 2018, 44(4): 1359-1366.
[25] 李景丽, 袁涛, 杨庆, 等. 考虑土壤电离动态过程的接地体有限元模型[J]. 中国电机工程学报, 2011, 31(22): 149-157.
Li Jingli, Yuan Tao, Yang Qing, et al.Finite element model of grounding system considering soil dynamic ionization[J]. Proceedings of the CSEE, 2011, 31(22): 149-157.
[26] 崔韬. 配电线路高阻接地故障检测技术的研究[D]. 北京: 清华大学, 2009.
[27] 郑智慧, 邢鹏翔, 蓝磊, 等. 输电杆塔接地体对埋地油气管道的临界击穿场强试验研究[J]. 电瓷避雷器, 2020(3): 81-85, 91.
Zheng Zhihui, Xing Pengxiang, Lan Lei, et al.Experimental study on grounding device of transmission tower lightning discharge to underground oil-gas pipeline[J]. Insulators and Surge Arresters, 2020(3): 81-85, 91.
[28] 程杨. 杆塔接地装置的仿真计算与测量研究[D]. 武汉: 华中科技大学, 2012.
[29] 郭蕾, 古维富, 刘彬, 等. 杆塔接地装置的冲击阻抗建模及应用[J]. 电工技术学报, 2020, 35(10): 2239-2247.
Guo Lei, Gu Weifu, Liu Bin, et al.Impulse impedance modeling and application of tower grounding device[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2239-2247.
[30] 梁栋, 徐丙垠, 唐毅, 等. 10kV架空导线单相触树接地故障模型及其检测方法[J]. 中国电机工程学报, 2021, 41(15): 5221-5232.
Liang Dong, Xu Bingyin, Tang Yi, et al.Model and detection method for tree-contact single-phase-to-ground faults on 10kV overhead lines[J]. Proceedings of the CSEE, 2021, 41(15): 5221-5232. |