[1] Hou Fengze, Wang Wenbo, Cao Liqiang, et al.Review of packaging schemes for power module[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 223-238.
[2] Paul C R.Inductance: loop and partial[M]. [Los Alamitos, Calif.]: IEEE, 2010
[3] (德)安德列亚斯·福尔克(Andreas Volke),(德)麦克尔·郝康普(Michael Hornkamp). IGBT模块: 技术、驱动和应用[M]. 韩金刚译. 北京: 机械工业出版社, 2016.
[4] Wintrich A, Ulrich N, Werner T, et al.Application manual power semiconductors[M]. Semikron International GmbH, 2015
[5] Ling J, Xu Tao, Luechinger C.Large Cu wire wedge bonding process for power devices[C]//2011 IEEE 13th Electronics Packaging Technology Conference, Singapore, 2011: 1-5.
[6] 陈云, 王立, 吕家力, 等. 功率模块铜线键合技术及其可靠性研究[J]. 电子与封装, 2017, 17(9): 1-4.
Chen Yun, Wang Li, Lv Jiali, et al.The cooper wire bonding technology with high reliability[J]. Electronics & Packaging, 2017, 17(9): 1-4.
[7] Schmidt R, König C, Prenosil P.Novel wire bond material for advanced power module packages[J]. Microelectronics Reliability, 2012, 52(9/10): 2283-2288.
[8] Luechinger C.Ribbon bonding - A scalable interconnect for power QFN packages[C]//2007 9th Electronics Packaging Technology Conference. Singapore. IEEE, : 47-54.
[9] Boettge, F. Naumann, R. Klengel, S. Klengel and M. Petzold, "Packaging material issues in high temperature power electronics," 2013 Eurpoean Microelectronics Packaging Conference (EMPC), Grenoble, France, 2013:1-6.
[10] Marenco N, Kontek M, Reinert W, et al.Copper ribbon bonding for power electronics applications[C]//2013 Eurpoean Microelectronics Packaging Conference (EMPC), Grenoble, France, 2013 : 1-4.
[11] Ling J, Xu Tao, Chen R, et al.Cu and Al-Cu composite-material interconnects for power devices[C]//2012 IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, USA. 2012 : 1905-1911.
[12] Abdoulahad T, Emmanuel S, William S, et al.3D-FE electro-thermo-magnetic modeling of automotive power electronic modules - Wire-bonding and Copper clip technologies comparison[C]//2019 IEEE International Workshop on Integrated Power Packaging, Toulouse, France, 2019 : 78-82.
[13] Zhu Qingwei, Forsyth A, Todd R, et al.Thermal characterization of a copper-clip-bonded IGBT module with double-sided cooling[C]//2017 23rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Amsterdam, Netherlands, 2017: 1-6.
[14] Weidner K, Kaspar M, Seliger N.Planar interconnect technology for power module system integration[C]// 2012 7th International Conference on Integrated Power Electronics Systems(CIPS), Nuremberg, Germany, 2012 : 1-5.
[15] Dudek R, Döring R, Hildebrandt M, et al.Analyses of thermo-mechanical reliability issues for power modules designed in planar technology[C]//2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Montpellier, France, 2016 : 1-8.
[16] Ren Yu, Yang Xu, Zhang Fan, et al.Voltage suppression in wire-bond-based multichip phase-leg SiC MOSFET module using adjacent decoupling concept[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8235-8246.
[17] LvJianwei, Zhang Chi, Chen Cai, et al. A dynamic current sharing method in multi-chip SiC power module using stacked DBC bridges and decoupling capacitors based on the original simple module layout[C]//2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia). Wuhan, China, 2021: 184-188.
[18] Li Shengnan, Tolbert L M, Wang Fei, et al.Stray inductance reduction of commutation loop in the P-cell and N-cell-based IGBT phase leg module[J]. IEEE Transactions on Power Electronics, 2014, 29(7): 3616-3624.
[19] Chen Zheng, Yao Yiying, Boroyevich D, et al.A 1200 V, 60 A SiC MOSFET multi-chip phase-leg module for high-temperature, high-frequency applications[J]. 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2013: 608-615.
[20] Evans T M, Le Quang, Mukherjee S, et al. PowerSynth: a power module layout generation tool[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5063-5078.
[21] Narazaki A, Shirasawa T, Takayama T, et al.Direct beam lead bonding for trench MOSFET & CSTBT[C]//Proceedings of ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, Santa Barbara, CA, USA, 2005: 75-78.
[22] Ueda T, Yoshimatsu N, Kimoto N, et al.Simple, compact, robust and high-performance power module T-PM (transfer-molded power module)[C]//2010 22nd International Symposium on Power Semiconductor Devices & IC's (ISPSD). Hiroshima, Japan. IEEE, : 47-50.
[23] Stockmeier T, Beckedahl P, Göbl C, et al.SKiN: Double side sintering technology for new packages[C]//2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs. San Diego, CA, USA. IEEE, : 324-327.
[24] Chen Zheng, Yao Yiying, Boroyevich D, et al.An ultra-fast SiC phase-leg module in modified hybrid packaging structure[C]//2014 IEEE Energy Conversion Congress and Exposition. Pittsburgh, PA, USA, 2014: 2880-2886.
[25] Chen Cai, Chen Yu, Li Yuxiong, et al.An SiC-based half-bridge module with an improved hybrid packaging method for high power density applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8980-8991.
[26] Vagnon E, Jeannin P O, Crebier J C, et al.A bus-bar-like power module based on three-dimensional power-chip-on-chip hybrid integration[J]. IEEE Transactions on Industry Applications, 2010, 46(5): 2046-2055.
[27] Yin Jian, Liang Zhenxian, van Wyk J D. High temperature embedded SiC chip module (ECM) for power electronics applications[J]. IEEE Transactions on Power Electronics, 2007, 22(2): 392-398.
[28] Wolfspeed,“CAB760M12HM3 3nd-Generation1200-V,1.33-mΩ, Silicon-Carbide power modules”https://www.wolfspeed.com/products/power/sic-power-modules/hm-power-module-family/.
[29] Zhang Boyi, Wang Shuo.Parasitic inductance modeling and reduction for wire-bonded half-bridge SiC multichip power modules[J]. IEEE Transactions on Power Electronics, 2021, 36(5): 5892-5903.
[30] Wang Liang, Zeng Zheng, Sun Peng, et al.Current-bunch concept for parasitic-oriented extraction and optimization of multichip SiC power module[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 8593-8599.
[31] Nelson B, Lemmon A, DeBoi B, et al. Measurement-based modeling of power module parasitics with increased accuracy[C]//2020 IEEE Applied Power Electronics Conference and Exposition. New Orleans, LA, USA. IEEE, : 1430-1437.
[32] Huang Zhizhao, Chen Cai, Xie Yue, et al.A high-performance embedded SiC power module based on a DBC-stacked hybrid packaging structure[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 351-366.
[33] Yang Fengtao, JiaLixin, Wang Laili, et al. Interleaved planar packaging method of multichip SiC power module for thermal and electrical performance improvement[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 1615-1629.
[34] Zhao Cheng, Wang Laili, Zhang Fan.Effect of asymmetric layout and unequal junction temperature on current sharing of paralleled SiC MOSFETs with kelvin-source connection[J]. IEEE Transactions on Power Electronics, 2020, 35(7): 7392-7404.
[35] Zhao Cheng, Wang Laili, Zhang Fan, et al.A method to balance dynamic current of paralleled SiC MOSFETs with kelvin connection based on response surface model and nonlinear optimization[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 2068-2079.
[36] Wang Laili, Zhang Tongyu, Yang Fengtao, et al.Cu clip-bonding method with optimized source inductance for current balancing in multichip SiC MOSFET power module[J]. IEEE Transactions on Power Electronics, 2022, 37(7): 7952-7964.
[37] YOUNESSHABANY. 传热学: 电力电子器件热管理[M]. 北京: 机械工业出版社, 2013.
[38] Kurosu T, Sasaki K, Nishihara A, et al. Packaging technologies of direct-cooled power module[C]//The2010 International Power Electronics Conference - ECCE ASIA -. Sapporo, Japan. IEEE, : 2115-2119.
[39] Xu Ling, Zhou Yang, Wang Miaocao, et al.Thermal performance and reliability management for novel power electronic packaging using integrated base plate[C]//2015 16th International Conference on Electronic Packaging Technology (ICEPT). Changsha, China. IEEE, : 612-617.
[40] Zhang Changli, Kim Y, Xu Ling.A study on novel integrated base plate (IBP) package for power electronics module[C]//2019 IEEE International Conference on Electron Devices and Solid-State Circuits. Xi'an, China. IEEE, : 1-3.
[41] Khazaka R, Martin E, Alexis J, et al.Evaluation of direct printed heat sinks on metallized ceramic substrate for high-performance power modules[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(6): 955-962.
[42] Zhao Cheng, Wang Laili, Xu Yunfei, et al.A method to minimize junction temperature difference of dies in multichip power modules[C]//2019 IEEE Energy Conversion Congress and Exposition,Baltimore, MD, USA. IEEE, : 3318-3324.
[43] Mu Wei, Wang Laili, Wang Binyu, et al.Direct integration of optimized phase-change heat spreaders into SiC power module for thermal performance improvements under high heat flux[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5398-5410.
[44] Gurpinar E, Chowdhury S, Ozpineci B, et al.Graphite-embedded high-performance insulated metal substrate for wide-bandgap power modules[J]. IEEE Transactions on Power Electronics, 2021, 36(1): 114-128.
[45] Woo D R M, Yuan H H, Li J A J, et al. Miniaturized double side cooling packaging for high power 3 phase SiC inverter module with junction temperature over 220℃[C]//2016 IEEE 66th Electronic Components and Technology Conference. Las Vegas, NV, USA, IEEE,2016 : 1190-1196.
[46] Liang Zhenxian, Wang F, Tolbert L.Development of packaging technologies for advanced SiC power modules[C]//2014 IEEE Workshop on Wide Bandgap Power Devices and Applications. Knoxville, TN, USA. IEEE, : 42-47.
[47] Fukumoto A, Berry D, Ngo K D T, et al. Effects of Extreme Temperature Swings ( -55℃ to 250 C) on Silicon Nitride Active Metal Brazing Substrates[J]. IEEE Transactions on Device and Materials Reliability, 2014, 14(2): 751-756.
[48] Navarro L A, Perpiñà X, Godignon P, et al.Thermomechanical assessment of Die-attach materials for wide bandgap semiconductor devices and harsh environment applications[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2261-2271.
[49] Knoerr M, Schletz A.Power semiconductor joining through sintering of silver nanoparticles: evaluation of influence of parameters time, temperature and pressure on density, strength and reliability[C]//2010 6th International Conference on Integrated Power Electronics Systems (CIPS), 2010.
[50] Grummel B J, Shen Z J, Mustain H A, et al.Thermo-mechanical characterization of Au-in transient liquid phase bonding Die-attach[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(5): 716-723.
[51] Eichinger B, Behrendt T, Ohm S N, et al.Cu sinter pastes for pure-Cu Die-attach applications of power modules[C]//2018 IEEE 20th Electronics Packaging Technology Conference, Singapore, 2018 : 26-30.
[52] Chidambaram V, Beng Yeung H, Sing C Y, et al.High-temperature endurable encapsulation material[C]//2012 IEEE 14th Electronics Packaging Technology Conference, Singapore,2012 : 61-66.
[53] Khazaka R, Locatelli M L, Diaham S, et al.Effects of mechanical stresses, thickness and atmosphere on aging of polyimide thin films at high temperature[J]. Polymer Degradation and Stability, 2013, 98(1): 361-367.
[54] Bayer C F, Baer E, Waltrich U, et al.Simulation of the electric field strength in the vicinity of metallization edges on dielectric substrates[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(1): 257-265.
[55] You Haoyang, Wei Zhuo, Hu Boxue, et al.Partial discharge behaviors in power modules under square pulses with ultrafast dv/dt[J]. IEEE Transactions on Power Electronics, 2021, 36(3): 2611-2620.
[56] Nakamura S, Kumada A, Hidaka K, et al.Electrical treeing in silicone gel under repetitive voltage impulses[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6): 1919-1925.
[57] Hohlfeld O, Bayerer R, Hunger T, et al.Stacked substrates for high voltage applications[C]//2012 7th International Conference on Integrated Power Electronics Systems (CIPS), Nuremberg, Germany,2012: 1-4.
[58] S. Kicinet al., "1.7 kV High-Current SiC Power Module Based on Multi-Level Substrate Concept and Exploiting MOSFET Body Diode during Operation," PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2017, pp. 1-7.
[59] Hourdequin H, Laudebat L, Locatelli M L, et al.Design of packaging structures for high voltage power electronics devices: electric field stress on insulation[C]//2016 IEEE International Conference on Dielectrics. Montpellier, France. IEEE, : 999-1002.
[60] Reynes H, Buttay C, Morel H.Protruding ceramic substrates for high voltage packaging of wide bandgap semiconductors[C]//2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, USA, 2017 : 404-410.
[61] Bayer C F, Waltrich U, Soueidan A, et al.Stacking of insulating substrates and a field plate to increase the PDIV for high voltage power modules[C]//2016 IEEE 66th Electronic Components and Technology Conference, Las Vegas, NV, USA, 2016: 1172-1178.
[62] Frey D, Schanen J L, Auge J L, et al.Electric field investigation in high voltage power modules using finite element simulations and partial discharge measurements[C]//2003 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, Salt Lake City, UT, USA, 2003: 1000-1005.
[63] Bach H L, Maximilian Endres T, Dirksen D, et al.Ceramic embedding as packaging solution for future power electronic applications[C]//2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata, Japan, 2018.
[64] Bayer C, Waltrich U, Soueidan A.Enhancement of the partial discharge inception voltage of DBCs by adjusting the permittivity of the encapsulation[C]//9th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 2016.
[65] Waltrich U, Bayer C F, Reger M, et al.Enhancement of the partial discharge inception voltage of ceramic substrates for power modules by trench coating[C]//2016 International Conference on Electronics Packaging (ICEP), Hokkaido, Japan, 2016 : 536-541.
[66] Diaham S, Nava Z V, Lévêque L, et al.An original in situ way to build field grading materials (FGM) with permittivity gradient using electrophoresis[C]//2018 IEEE 2nd International Conference on Dielectrics, Budapest, Hungary, 2018: 1-4.
[67] Lévêque L, Diaham S, Valdez-Nava Z, et al.Effects of filler content on dielectric properties of epoxy/SrTiO3 and epoxy/BaTiO3 composites[C]//2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena. Ann Arbor, MI, USA,2015 : 701-704.
[68] Wang Ningyan, Cotton I, Robertson J, et al.Partial discharge control in a power electronic module using high permittivity non-linear dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(4): 1319-1326.
[69] Varlow B R, Robertson J, Donnelly K P.Nonlinear fillers in electrical insulating materials[J]. IET Science, Measurement & Technology, 2007, 1(2): 96-102.
[70] Tousi M M, Ghassemi M.Combined geometrical techniques and applying nonlinear field dependent conductivity layers to address the high electric field stress issue in high voltage high-density wide bandgap power modules[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(1): 305-313.
[71] 张军, 张犁, 成瑜. IGBT模块寿命评估研究综述[J]. 电工技术学报, 2021, 36(12): 2560-2575.
Zhang Jun, Zhang Li, Cheng Yu.Review of the lifetime evaluation for the IGBT module[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2560-2575.
[72] 刘平, 李海鹏, 苗轶如, 等. 基于内置温度传感器的碳化硅功率模块结温在线提取方法[J]. 电工技术学报, 2021, 36(12): 2522-2534.
Liu Ping, Li Haipeng, Miao Yiru, et al.Online junction temperature extraction for SiC module based on built-in temperature sensor[J]. Transactions of China Electro-technical Society, 2021, 36(12): 2522-2534.
[73] Chen Chuantong, Choe C, Kim D, et al.Lifetime prediction of a SiC power module by micron/submicron Ag sinter joining based on fatigue, creep and thermal properties from room temperature to high temperature[J]. Journal of Electronic Materials, 2021, 50(3): 687-698. |