[1] 亢丽君, 王蓓蓓, 薛必克, 等. 计及爬坡场景覆盖的高比例新能源电网平衡策略研究[J]. 电工技术学报, 2022, 37(13): 3275-3288.
Kang Lijun, Wang Beibei, Xue Bike, et al.Research on the balance strategy for power grid with high proportion renewable energy considering the ramping scenario coverage[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3275-3288.
[2] 王雪纯, 陈红坤, 陈磊. 提升区域综合能源系统运行灵活性的多主体互动决策模型[J]. 电工技术学报, 2021, 36(11): 2207-2219.
Wang Xuechun, Chen Hongkun, Chen Lei.Multi-player interactive decision-making model for operational flexibility improvement of regional integrated energy system[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2207-2219.
[3] 姜云鹏, 任洲洋, 李秋燕, 等. 考虑多灵活性资源协调调度的配电网新能源消纳策略[J]. 电工技术学报, 2022, 37(7): 1820-1835.
Jiang Yunpeng, Ren Zhouyang, Li Qiuyan, et al.An accommodation strategy for renewable energy in distribution network considering coordinated dispatching of multi-flexible resources[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1820-1835.
[4] 菅学辉, 张利, 杨立滨, 等. 高比例风电并网下基于卡尔多改进的深度调峰机制[J]. 电力系统自动化, 2018, 42(8): 110-118.
Jian Xuehui, Zhang Li, Yang Libin, et al.Deep-peak regulation mechanism based on kaldor improvement under high-penetration wind power[J]. Automation of Electric Power Systems, 2018, 42(8): 110-118.
[5] 李军徽, 张嘉辉, 穆钢, 等. 储能辅助火电机组深度调峰的分层优化调度[J]. 电网技术, 2019, 43(11): 3961-3970.
Li Junhui, Zhang Jiahui, Mu Gang, et al.Hierarchical optimization scheduling of deep peak shaving for energy-storage auxiliary thermal power generating units[J]. Power System Technology, 2019, 43(11): 3961-3970.
[6] 李军徽, 张嘉辉, 穆钢, 等. 计及负荷峰谷特性的储能调峰日前优化调度策略[J]. 电力自动化设备, 2020, 40(7): 128-133, 140, 134.
Li Junhui, Zhang Jiahui, Mu Gang, et al. Day-ahead optimal scheduling strategy of peak regulation for energy storage considering peak and valley characteristics of load[J]. Electric Power Automation Equipment, 2020, 40(7): 128-133, 140, 134.
[7] 韩笑, 周明, 李庚银. 计及储能和空调负荷的主动配电网多目标优化调度[J]. 电力系统保护与控制, 2018, 46(7): 14-23.
Han Xiao, Zhou Ming, Li Gengyin.Multi-objective optimal dispatching of active distribution networks considering energy storage systems and air-conditioning loads[J]. Power System Protection and Control, 2018, 46(7): 14-23.
[8] 徐成司, 董树锋, 华一波, 等. 基于改进一致性算法的工业园区分布式综合需求响应[J]. 电工技术学报, 2022, 37(20): 5175-5187.
Xu Chengsi, Dong Shufeng, Hua Yibo, et al.Distributed comprehensive demand response of industrial parks based on improved consistency algorithm[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5175-5187.
[9] 袁晓冬, 费骏韬, 胡波, 等. 资源聚合商模式下的分布式电源、储能与柔性负荷联合调度模型[J]. 电力系统保护与控制, 2019, 47(22): 17-26.
Yuan Xiaodong, Fei Juntao, Hu Bo, et al.Joint scheduling model of distributed generation, energy storage and flexible load under resource aggregator mode[J]. Power System Protection and Control, 2019, 47(22): 17-26.
[10] 崔杨, 修志坚, 刘闯, 等. 计及需求响应与火-储深度调峰定价策略的电力系统双层优化调度[J]. 中国电机工程学报, 2021, 41(13): 4403-4415.
Cui Yang, Xiu Zhijian, Liu Chuang, et al.Dual level optimal dispatch of power system considering demand response and pricing strategy on deep peak regulation[J]. Proceedings of the CSEE, 2021, 41(13): 4403-4415.
[11] 常源, 刘宗歧, 黄珊, 等. 风火网混合博弈协调规划及利益分配方法[J]. 电网技术, 2019, 43(11): 3899-3907.
Chang Yuan, Liu Zongqi, Huang Shan, et al.Coordinated planning and profit distribution of wind power, thermal power and grid based on mixed game theory[J]. Power System Technology, 2019, 43(11): 3899-3907.
[12] 武昭原, 周明, 姚尚润, 等. 基于合作博弈论的风储联合参与现货市场优化运行策略[J]. 电网技术, 2019, 43(8): 2815-2824.
Wu Zhaoyuan, Zhou Ming, Yao Shangrun, et al.Optimization operation strategy of wind-storage coalition in spot market based on cooperative game theory[J]. Power System Technology, 2019, 43(8): 2815-2824.
[13] 陈启鑫, 刘学, 房曦晨, 等. 考虑可再生能源保障性消纳的电力市场出清机制[J]. 电力系统自动化, 2021, 45(6): 26-33.
Chen Qixin, Liu Xue, Fang Xichen, et al.Electricity market clearing mechanism considering guaranteed accommodation of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(6): 26-33.
[14] 钟佳宇, 陈皓勇, 陈武涛, 等. 含灵活性资源交易的电力市场实时出清[J]. 电网技术, 2021, 45(3): 1032-1041.
Zhong Jiayu, Chen Haoyong, Chen Wutao, et al.Real-time clearing of electricity markets with flexible resource transactions[J]. Power System Technology, 2021, 45(3): 1032-1041.
[15] 吴珊, 边晓燕, 张菁娴, 等. 面向新型电力系统灵活性提升的国内外辅助服务市场研究综述[J]. 电工技术学报, 2023, 38(6): 1662-1677.
Wu Shan, Bian Xiaoyan, Zhang Jingxian, et al.A review of domestic and foreign ancillary services market for improving flexibility of new power system[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1662-1677.
[16] 安麒, 王剑晓, 武昭原, 等. 高比例可再生能源渗透下的电力市场价值分配机制设计[J]. 电力系统自动化, 2022, 46(7): 13-22.
An Qi, Wang Jianxiao, Wu Zhaoyuan, et al.Benefit allocation mechanism design of electricity markets with penetration of high proportion of renewable energy[J]. Automation of Electric Power Systems, 2022, 46(7): 13-22.
[17] 李璐, 郑亚先, 陈长升, 等. 风电的波动成本计算及应用研究[J]. 中国电机工程学报, 2016, 36(19): 5155-5163, 5396.
Li Lu, Zheng Yaxian, Chen Changsheng, et al.Calculation of wind power variation costs and its application research[J]. Proceedings of the CSEE, 2016, 36(19): 5155-5163, 5396.
[18] 赵书强, 吴杨, 李志伟, 等. 考虑风光出力不确定性的电力系统调峰能力及经济性分析[J]. 电网技术, 2022, 46(5): 1752-1761.
Zhao Shuqiang, Wu Yang, Li Zhiwei, et al.Analysis of power system peaking capacity and economy considering uncertainty of wind and solar output[J]. Power System Technology, 2022, 46(5): 1752-1761.
[19] 胡佳. 融合多种策略的改进粒子群算法[J]. 计算机系统应用, 2021, 30(7): 172-177.
Hu Jia.Improved particle swarm optimization algorithm combining multiple strategies[J]. Computer Systems & Applications, 2021, 30(7): 172-177. |