[1] Mahmud N, Zahedi A.Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 582-595.
[2] 高聪哲, 黄文焘, 余墨多, 等. 基于智能软开关的主动配电网电压模型预测控制优化方法[J]. 电工技术学报, 2022, 37(13): 3263-3274.
Gao Congzhe, Huang Wentao, Yu Moduo, et al.A model predictive control method to optimize voltages for active distribution networks with soft open point[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3263-3274.
[3] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11.
Kang Chongqing, Yao Liangzhong.Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 2-11.
[4] 姚良忠, 朱凌志, 周明, 等. 高比例可再生能源电力系统的协同优化运行技术展望[J]. 电力系统自动化, 2017, 41(9): 36-43.
Yao Liangzhong, Zhu Lingzhi, Zhou Ming, et al.Prospects of coordination and optimization for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 36-43.
[5] 郭庆来, 王彬, 孙宏斌, 等. 支撑大规模风电集中接入的自律协同电压控制技术[J]. 电力系统自动化, 2015, 39(1): 88-93, 130.
Guo Qinglai, Wang Bin, Sun Hongbin, et al.Autonomous-synergic voltage control technology supporting large-scale wind power integration[J]. Automation of Electric Power Systems, 2015, 39(1): 88-93, 130.
[6] Wang Gang, Kekatos V, Conejo A J, et al.Ergodic energy management leveraging resource variability in distribution grids[J]. IEEE Transactions on Power Systems, 2016, 31(6): 4765-4775.
[7] 陈江澜, 汤卫东, 肖小刚, 等. 华中电网协调电压控制模式研究[J]. 电力自动化设备, 2011, 31(8): 47-51.
Chen Jianglan, Tang Weidong, Xiao Xiaogang, et al.Coordinated voltage control for Central China Power Grid[J]. Electric Power Automation Equipment, 2011, 31(8): 47-51.
[8] 徐峰达, 郭庆来, 孙宏斌, 等. 基于模型预测控制理论的风电场自动电压控制[J]. 电力系统自动化, 2015, 39(7): 59-67.
Xu Fengda, Guo Qinglai, Sun Hongbin, et al.Automatic voltage control of wind farms based on model predictive control theory[J]. Automation of Electric Power Systems, 2015, 39(7): 59-67.
[9] 国家市场监督管理总局, 国家标准化管理委员会. GB/T 37408—2019 光伏发电并网逆变器技术要求[S]. 北京: 中国标准出版社, 2019.
[10] Liu Haotian, Wu Wenchuan.Two-stage deep reinforcement learning for inverter-based volt-VAR control in active distribution networks[J]. IEEE Transactions on Smart Grid, 2021, 12(3): 2037-2047.
[11] 颜湘武, 徐韵, 李若瑾, 等. 基于模型预测控制含可再生分布式电源参与调控的配电网多时间尺度无功动态优化[J]. 电工技术学报, 2019, 34(10): 2022-2037.
Yan Xiangwu, Xu Yun, Li Ruojin, et al.Multi-time scale reactive power optimization of distribution grid based on model predictive control and including RDG regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2022-2037.
[12] 黄大为, 王孝泉, 于娜, 等. 计及光伏出力不确定性的配电网混合时间尺度无功/电压控制策略[J]. 电工技术学报, 2022, 37(17): 4377-4389.
Huang Dawei, Wang Xiaoquan, Yu Na, et al.Hybrid time-scale reactive power/voltage control strategy for distribution network considering photovoltaic output uncertainty[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4377-4389.
[13] Cao Di, Zhao Junbo, Hu Weihao, et al.Deep reinforcement learning enabled physical-model-free two-timescale voltage control method for active distribution systems[J]. IEEE Transactions on Smart Grid, 2022, 13(1): 149-165.
[14] Wang Licheng, Bai Feifei, Yan Ruifeng, et al.Real-time coordinated voltage control of PV inverters and energy storage for weak networks with high PV penetration[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3383-3395.
[15] 胡丹尔, 彭勇刚, 韦巍, 等. 多时间尺度的配电网深度强化学习无功优化策略[J]. 中国电机工程学报, 2022, 42(14): 5034-5045.
Hu Daner, Peng Yonggang, Wei Wei, et al.Multi-timescale deep reinforcement learning for reactive power optimization of distribution network[J]. Proceedings of the CSEE, 2022, 42(14): 5034-5045.
[16] 李静, 戴文战, 韦巍. 基于混合整数凸规划的含风力发电机组配电网无功补偿优化配置[J]. 电工技术学报, 2016, 31(3): 121-129.
Li Jing, Dai Wenzhan, Wei Wei.A mixed integer convex programming for optimal reactive power compensation in distribution system with wind turbines[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 121-129.
[17] 赵晋泉, 居俐洁, 戴则梅, 等. 基于分支定界—原对偶内点法的日前无功优化[J]. 电力系统自动化, 2015, 39(15): 55-60.
Zhao Jinquan, Ju Lijie, Dai Zemei, et al.Day-ahead reactive power optimization based on branch and bound-interior point method[J]. Automation of Electric Power Systems, 2015, 39(15): 55-60.
[18] 崔挺, 孙元章, 徐箭, 等. 基于改进小生境遗传算法的电力系统无功优化[J]. 中国电机工程学报, 2011, 31(19): 43-50.
Cui Ting, Sun Yuanzhang, Xu Jian, et al.Reactive power optimization of power system based on improved niche genetic algorithm[J]. Proceedings of the CSEE, 2011, 31(19): 43-50.
[19] Malachi Y, Singer S.A genetic algorithm for the corrective control of voltage and reactive power[J]. IEEE Transactions on Power Systems, 2006, 21(1): 295-300.
[20] Jalali M, Kekatos V, Gatsis N, et al.Designing reactive power control rules for smart inverters using support vector machines[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1759-1770.
[21] 邵美阳, 吴俊勇, 石琛, 等. 基于数据驱动和深度置信网络的配电网无功优化[J]. 电网技术, 2019, 43(6): 1874-1883.
Shao Meiyang, Wu Junyong, Shi Chen, et al.Reactive power optimization of distribution network based on data driven and deep belief network[J]. Power System Technology, 2019, 43(6): 1874-1883.
[22] 李鹏, 姜磊, 王加浩, 等. 基于深度强化学习的新能源配电网双时间尺度无功电压优化[J/OL]. 中国电机工程学报, 2022, http://kns.cnki.net/kcms/detail/11.2107.TM.20220826.1757.024.html.
Li Peng, Jiang Lei, Wang Jiahao, et al. Optimization of dual-time scale reactive voltage for distribution network with renewable energy based on deep reinforcement learning[J/OL]. Proceedings of the CSEE, 2022, http://kns.cnki.net/kcms/detail/11.2107.TM. 20220826.1757.024.html.
[23] 倪爽, 崔承刚, 杨宁, 等. 基于深度强化学习的配电网多时间尺度在线无功优化[J]. 电力系统自动化, 2021, 45(10): 77-85.
Ni Shuang, Cui Chenggang, Yang Ning, et al.Multi-time-scale online optimization for reactive power of distribution network based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2021, 45(10): 77-85.
[24] Duan Jiajun, Shi Di, Diao Ruisheng, et al.Deep-reinforcement-learning-based autonomous voltage control for power grid operations[J]. IEEE Transactions on Power Systems, 2020, 35(1): 814-817.
[25] Wang Wei, Yu Nanpeng, Gao Yuanqi, et al.Safe off-policy deep reinforcement learning algorithm for volt-VAR control in power distribution systems[J]. IEEE Transactions on Smart Grid, 2020, 11(4): 3008-3018.
[26] Yang Qiuling, Wang Gang, Sadeghi A, et al.Two-timescale voltage control in distribution grids using deep reinforcement learning[J]. IEEE Transactions on Smart Grid, 2020, 11(3): 2313-2323.
[27] Kulmala A, Repo Sami, Järventausta P.Coordinated voltage control in distribution networks including several distributed energy resources[J]. IEEE Transactions on Smart Grid, 2014, 5(4): 2010-2020.
[28] Cavraro G, Carli R.Local and distributed voltage control algorithms in distribution networks[J]. IEEE Transactions on Power Systems, 2018, 33(2): 1420-1430.
[29] Karagiannopoulos S, Aristidou P, Hug G.Data-driven local control design for active distribution grids using off-line optimal power flow and machine learning techniques[J]. IEEE Transactions on Smart Grid, 2019, 10(6): 6461-6471.
[30] 乐健, 王曹, 李星锐, 等. 中压配电网多目标分布式优化控制策略[J]. 电工技术学报, 2019, 34(23): 4972-4981.
Le Jian, Wang Cao, Li Xingrui, et al.The multi-object distributed optimization control strategy of medium voltage distribution networks[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4972-4981.
[31] 赵晋泉, 张振伟, 姚建国, 等. 基于广义主从分裂的输配电网一体化分布式无功优化方法[J]. 电力系统自动化, 2019, 43(3): 108-115.
Zhao Jinquan, Zhang Zhenwei, Yao Jianguo, et al.Heterogeneous decomposition based distributed reactive power optimization method for global transmission and distribution network[J]. Automation of Electric Power Systems, 2019, 43(3): 108-115.
[32] Zeraati M, Hamedani Golshan M E, Guerrero J M. Distributed control of battery energy storage systems for voltage regulation in distribution networks with high PV penetration[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3582-3593.
[33] Sun Xianzhuo, Qiu Jing.Two-stage volt/var control in active distribution networks with multi-agent deep reinforcement learning method[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 2903-2912.
[34] 赵冬梅, 陶然, 马泰屹, 等. 基于多智能体深度确定策略梯度算法的有功-无功协调调度模型[J]. 电工技术学报, 2021, 36(9): 1914-1925.
Zhao Dongmei, Tao Ran, Ma Taiyi, et al.Active and reactive power coordinated dispatching based on multi-agent deep deterministic policy gradient algorithm[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1914-1925.
[35] Liu Haotian, Wu Wenchuan.Online multi-agent reinforcement learning for decentralized inverter-based volt-VAR control[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 2980-2990.
[36] Cao Di, Hu Weihao, Zhao Junbo, et al.Reinforcement learning and its applications in modern power and energy systems: a review[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(6): 1029-1042.
[37] Xu Yan, Dong Zhao yang, Zhang Rui, et al. Multi-timescale coordinated voltage/var control of high renewable-penetrated distribution systems[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4398-4408.
[38] Yang Yan, Yang Zhifang, Yu Juan, et al.Fast calculation of probabilistic power flow: a model-based deep learning approach[J]. IEEE Transactions on Smart Grid, 2020, 11(3): 2235-2244.
[39] Diederik P Kingma, Jimmy Lei Ba.Adam: A method for stochastic optimization[C]. Proceedings of the 3rd International Conference on Learning Representations (ICLR), 2015.
[40] Zhang Cong, Chen Haoyong, Shi Ke, et al.An interval power flow analysis through optimizing-scenarios method[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 5217-5226. |