[1] 邵涛, 严萍. 大气压气体放电及其等离子体应用[M]. 北京: 科学出版社, 2015.
[2] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9.
Dai Dong, Ning Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9.
[3] 赵鸣鸣, 于维鑫, 孔飞, 等. 基于二元布气的大气压等离子体沉积TiO2功能层提高陶瓷表面绝缘性能[J]. 电工技术学报, 2022, 37(13): 3404-3412.
Zhao Mingming, Yu Weixin, Kong Fei, et al.Improvement of surface insulating properties of ceramics by deposition of TiO2 functional layer by atmospheric pressure plasma with binary gas distribution[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3404-3412.
[4] 黑雪婷, 高远, 窦立广, 等. 纳秒脉冲介质阻挡放电等离子体驱动CH4-CH3OH转化制备液态化学品的特性研究[J]. 电工技术学报, 2022, 37(15): 3941-3950.
Hei Xueting, Gao Yuan, Dou Liguang, et al.Study on plasma enhanced CH4-CH3OH conversion to liquid chemicals by nanosecond pulsed dielectric barrier discharge[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3941-3950.
[5] 杨波, 仲崇山, 王维洲, 等. 等离子体活性水用于农业领域的研究进展[J]. 农业工程, 2019, 9(2): 101-107.
Yang Bo, Zhong Chongshan, Wang Weizhou, et al.Research progress of plasma activated water used in agriculture[J]. Agricultural Engineering, 2019, 9(2): 101-107.
[6] 徐晗, 陈泽煜, 刘定新. 大气压冷等离子体处理水溶液:液相活性粒子检测方法综述[J]. 电工技术学报, 2020, 35(17): 3561-3582.
Xu Han, Chen Zeyu, Liu Dingxin.Aqueous solutions treated by cold atmospheric plasmas: a review of the detection methods of aqueous reactive species[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3561-3582.
[7] 蔡勇, 梁闯, 罗勇, 等. 气液冷等离子体多相反应器基础研究与应用进展[J]. 化工学报, 2019, 70(10): 3847-3858.
Cai Yong, Liang Chuang, Luo Yong, et al.Fundamental study and application progress in gas-liquid non-thermal plasma multiphase reactors[J]. CIESC Journal, 2019, 70(10): 3847-3858.
[8] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-705.
Shao Tao, Zhang Cheng, Wang Ruixue, et al.Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705.
[9] Machala Z, Tarabová B, Sersenová D, et al.Chemical and antibacterial effects of plasma activated water: correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions[J]. Journal of Physics D: Applied Physics, 2019, 52(3): 034002.
[10] Kutasi K, Popović D, Krstulović N, et al.Tuning the composition of plasma-activated water by a surface-wave microwave discharge and a kHz plasma jet[J]. Plasma Sources Science and Technology, 2019, 28(9): 095010.
[11] Terebun P, Kwiatkowski M, Hensel K, et al.Influence of plasma activated water generated in a gliding arc discharge reactor on germination of beetroot and carrot seeds[J]. Applied Sciences, 2021, 11(13): 6164.
[12] Fang Haiqin, Zhang Cheng, Sun Ao, et al.Effect of reactive chemical species on the degradation of deoxynivalenol, 3?acetyldeoxynivalenol, and 15-acetyldeoxynivalenol in low-temperature plasmas[J]. ACS Food Science & Technology, 2022, 2(3): 558-567.
[13] 满晨曦, 黄邦斗, 章程, 等. 不同脉冲参数下等离子体活化水活性氮特性[J]. 高电压技术, 2022, 48(6): 2326-2335.
Man Chenxi, Huang Bangdou, Zhang Cheng, et al.Reactive nitrogen species characteristic of plasma-activated water under different pulsed parameters[J]. High Voltage Engineering, 2022, 48(6): 2326-2335.
[14] Sun Jing, Alam D, Daiyan R, et al.A hybrid plasma electrocatalytic process for sustainable ammonia production[J]. Energy & Environmental Science, 2021, 14(2): 865-872.
[15] Liu Zhijie, Gao Yuting, Pang Bolun, et al.Comparison of the physicochemical properties and inactivation against tumor cells of PAW induced by underwater single-hole and multi-hole bubble plasma[J]. Journal of Physics D: Applied Physics, 2022, 55(29): 095202.
[16] Oh J S, Szili E J, Gaur N, et al.How to assess the plasma delivery of RONS into tissue fluid and tissue[J]. Journal of Physics D: Applied Physics, 2016, 49(30): 304005.
[17] Gromov M, Leonova K, de Geyter N, et al. N2 oxidation kinetics in a ns-pulsed discharge above a liquid electrode[J]. Plasma Sources Science and Technology, 2021, 30(6): 065024.
[18] Pang Bolun, Liu Zhijie, Zhang Huaiyan, et al.Investigation of the chemical characteristics and anticancer effect of plasma-activated water: the effect of liquid temperature[J]. Plasma Processes and Polymers, 2022, 19(1): e2100079.
[19] 童得恩, 朱鑫磊, 邹晓兵, 等. 水中放电预加热过程的数值模拟研究[J]. 高电压技术, 2019, 45(5): 1461-1467.
Tong De’en, Zhu Xinlei, Zou Xiaobing, et al.Numerical simulation of the preheating process of pulse discharge in water[J]. High Voltage Engineering, 2019, 45(5): 1461-1467.
[20] Li X D, Liu Y, Zhou G, et al.Subsonic streamers in water: initiation, propagation and morphology[J]. Journal of Physics D: Applied Physics, 2017, 50(25): 255301.
[21] Hamdan A, Ridani D A, Diamond J, et al.Pulsed nanosecond air discharge in contact with water: influence of voltage polarity, amplitude, pulse width, and gap distance[J]. Journal of Physics D: Applied Physics, 2020, 53(35): 355202.
[22] 温嘉烨, 李元, 倪正全, 等. 水中负极性灌木状放电特性研究[J]. 中国电机工程学报, 2021, 41(17): 6108-6116.
Wen Jiaye, Li Yuan, Ni Zhengquan, et al.Study on characteristics of negative bushy discharges in water[J]. Proceedings of the CSEE, 2021, 41(17): 6108-6116.
[23] Shu Zhan, Wang Chuanqi, Hossain I, et al.Preliminary study of an open-air water-contacting discharge for direct nitrogen fixation[J]. Plasma Science and Technology, 2021, 23(3): 95-103.
[24] Wu S, Thapa B, Rivera C, et al.Nitrate and nitrite fertilizer production from air and water by continuous flow liquid-phase plasma discharge[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 104761.
[25] Martynov S B, Porter R T J, Mahgerefteh H. Henry’s law constants and vapor-liquid distribution coefficients of noncondensable gases dissolved in carbon dioxide[J]. ACS Omega, 2022, 7(10): 8777-8788.
[26] Aquilanti V, Coutinho N D, Carvalho-Silva V H. Kinetics of low-temperature transitions and a reaction rate theory from non-equilibrium distributions[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375(2092): 20160201.
[27] 张梦瑶, 温嘉烨, 李元, 等. 气液混相水中脉冲放电过氧化氢生成规律的研究[J]. 高电压技术, 2019, 45(12): 4130-4136.
Zhang Mengyao, Wen Jiaye, Li Yuan, et al.Study on hydrogen peroxide formation during pulsed discharge in gas-liquid mixed phase[J]. High Voltage Engineering, 2019, 45(12): 4130-4136.
[28] Xu Zimu, Cheng Cheng, Shen Jie, et al.In vitro antimicrobial effects and mechanisms of direct current air-liquid discharge plasma on planktonic Staphylococcus aureus and Escherichia coli in liquids[J]. Bioelectrochemistry, 2018, 121: 125-134.
[29] Traylor M J, Pavlovich M J, Karim S, et al.Long-term antibacterial efficacy of air plasma-activated water[J]. Journal of Physics D: Applied Physics, 2011, 44(47): 472001.
[30] Šimečková J, Krčma F, Klofáč D, et al.Influence of plasma-activated water on physical and physical-chemical soil properties[J]. Water, 2020, 12(9): 2357.
[31] Sivachandiran L, Khacef A.Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment[J]. RSC Advances, 2017, 7(4): 1822-1832.
[32] Zhou Renwu, Zhou Rusen, Wang Peiyu, et al.Microplasma bubbles: reactive vehicles for biofilm dispersal[J]. ACS Applied Materials & Interfaces, 2019, 11(23): 20660-20669.
[33] Ganesh Subramanian P S, Ananthanarasimhan J, Leelesh P, et al. Plasma-activated water from DBD as a source of nitrogen for agriculture: specific energy and stability studies[J]. Journal of Applied Physics, 2021, 129(9): 093303.
[34] Man Chenxi, Zhang Cheng, Fang Haiqin, et al.Nanosecond-pulsed microbubble plasma reactor for plasma-activated water generation and bacterial inactivation[J]. Plasma Processes and Polymers, 2022, 19(6): e2200004.
[35] 孟国栋, 折俊艺, 应琪, 等. 微米尺度气体击穿的数值模拟研究进展[J]. 电工技术学报, 2022, 37(15): 3857-3875.
Meng Guodong, She Junyi, Ying Qi, et al.Research progress on numerical simulation of gas breakdown at microscale[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3857-3875. |