|
|
Study on the Surface Charge Dissipation Characteristics of Epoxy Resin Modified by Dopamine Grafted Nano Boron Nitride under High Frequency Electric Stress |
Li Zhihui1, Xie Zengqi2, Li Qingmin1, Dong Ziwei2, Wang Zhongdong3 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. Beijing Key Lab of HV and EMC North China Electric Power University Beijing 102206 China; 3. College of Engineering Mathematics and Physical Sciences University of Exeter Exeter EX44QJ United Kingdom |
|
|
Abstract Epoxy resin (EP) has excellent electrical and mechanical properties, commonly used as the main insulation material of high frequency power transformer. However, due to long-term work in a short rise time, high frequency voltage operation, the surface charge accumulation and dissipation process of the main insulation is affected under high frequency voltage. Surface charge is difficult to dissipate makes the degree of accumulation increased, resulting in increased surface charge density, easy to induce insulation failure. Nano modification is an effective means as to improve charge dissipation along composite insulation surface. In this proposed research, EP composites were prepared with dopamine modified nano boron nitride (h-BN). In this paper, a surface potential test system was first built to characterize the surface charge distribution of EP composites after high-frequency corona discharge, and then the isothermal current decay method was used to calculate the trap energy level distribution of EP composite insulating materials. The results show that the increase of the voltage frequency will lead to the increase of the initial potential and the accumulated charge density on the EP surface, and the potential decay rate first decreases and then increases, and reaches a minimum value at 10kHz. In addition, the high-frequency dissipation characteristics of the modified EP composites were also studied, and it was found that the dopamine grafting modification could effectively improve the high-frequency dissipation rate of the EP surface charge. When the doping mass fraction was 10%, the charge dissipation rate It reaches the maximum value of 62.15%, which is 19.41% higher than that of pure EP. The high frequency surface flashover characteristics of the two composite materials were further tested by the uniform boost method. The experimental results show that doping a certain concentration of BN nanofillers and BN fillers grafted with polydopamine can improve the creeping insulation performance of EP composites under high frequency stress, but too high doping content may reduce the surface charge dissipation rate, Increase the probability of creeping discharge. Taking the doping concentration of 10% as an example, the creepage flashover voltage of the P-BN/EP sample is 15.9kV, which is 14.73% higher than that of pure EP. The mechanism for performance improvement may include two aspects. On the one hand, the amino grafted on BN surface enhances the compatibility between the filler and the matrix, and the formed three-dimensional interconnected network broadens the charge dissipation path. On the other hand, the increased shallow trap density in the surface layer of the composite material facilitates the carrier to participate in the conductivity process through the tunneling effect, which boosts the carrier mobility. The presented results provide a referential basis for optimal design of the main insulation system of high-frequency transformers.
|
Received: 24 January 2022
|
|
|
|
|
[1] 赵彪, 宋强, 刘文华, 等. 用于柔性直流配电的高频链直流固态变压器[J]. 中国电机工程学报, 2014, 34(25): 4295-4303. Zhao Biao, Song Qiang, Liu Wenhua, et al.High-frequency-link DC solid state transformers for flexible DC distribution[J]. Proceedings of the CSEE, 2014, 34(25): 4295-4303. [2] 李子欣, 高范强, 赵聪, 等. 电力电子变压器技术研究综述[J]. 中国电机工程学报, 2018, 38(5): 1274-1289. Li Zixin, Gao Fanqiang, Zhao Cong, et al.Research review of power electronic transformer technologies[J]. Proceedings of the CSEE, 2018, 38(5): 1274-1289. [3] 赵义焜, 张国强, 韩冬, 等. 高频变压器用匝间绝缘材料沿面放电特性的实验研究[J]. 电工技术学报, 2019, 34(16): 3464-3471. Zhao Yikun, Zhang Guoqiang, Han Dong, et al.Study on surface discharge characteristics of inter-turn insulation materials in high-frequency transformers[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3464-3471. [4] 李庆民, 刘伟杰, 韩帅, 等. 环氧树脂绝缘高频电热联合老化中局部放电特性分析[J]. 高电压技术, 2015, 41(2): 389-395. Li Qingmin, Liu Weijie, Han Shuai, et al.Analysis on partial discharge characteristics of epoxy resin insulation during high-frequency electrical-thermal aging[J]. High Voltage Engineering, 2015, 41(2): 389-395. [5] 鲁杨飞, 李庆民, 刘涛, 等. 高频电压下表面电荷分布对沿面放电发展过程的影响[J]. 电工技术学报, 2018, 33(13): 3059-3070. Lu Yangfei, Li Qingmin, Liu Tao, et al.Effect of surface charge on the surface discharge evolution for polyimide under high frequency voltage[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 3059-3070. [6] 刘涛, 韩帅, 李庆民, 等. 频变电应力下高频电力变压器绝缘沿面放电形态及发展过程[J]. 电工技术学报, 2016, 31(19): 199-207. Liu Tao, Han Shuai, Li Qingmin, et al.Patterns and development of the surface discharge of high frequency power transformer insulation under frequency-dependent electric stress[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 199-207. [7] Cavallini A, Fabiani D, Montanari G C.Power electronics and electrical insulation systems - Part 1: Phenomenology overview[J]. IEEE Electrical Insulation Magazine, 2010, 26(3): 7-15. [8] Qi Bo, Gao Chunjia, Lü Yuzhen, et al.The impact of nano-coating on surface charge accumulation of epoxy resin insulator: characteristic and mechanism[J]. Journal of Physics D: Applied Physics, 2018, 51(24): 245303. [9] 刘志民, 邱毓昌, 冯允平. 对绝缘子表面电荷积聚机理的讨论[J]. 电工技术学报, 1999, 14(2): 65-68. Liu Zhimin, Qiu Yuchang, Feng Yunping.The discussion about accumulation mechanism of surface charge on insulating spacer[J]. Transactions of China Electrotechnical Society, 1999, 14(2): 65-68. [10] Hattori Y, Taniguchi T, Watanabe K, et al.Anisotropic dielectric breakdown strength of single crystal hexagonal boron nitride[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27877-27884. [11] 高宇, 王小芳, 李楠, 等. 聚合物绝缘材料载流子陷阱的表征方法及陷阱对绝缘击穿影响的研究进展[J]. 高电压技术, 2019, 45(7): 2219-2230. Gao Yu, Wang Xiaofang, Li Nan, et al.Characterization method for carrier trap and the effect on insulation breakdown within polymer insulating materials: a review[J]. High Voltage Engineering, 2019, 45(7): 2219-2230. [12] Ahmad P, Khandaker M U, Amin Y M.A simple technique to synthesise vertically aligned boron nitride nanosheets at 1200℃[J]. Advances in Applied Ceramics, 2015, 114(5): 267-272. [13] Heid T, Fréchette M, David E.Epoxy/BN micro- and submicro-composites: dielectric and thermal properties of enhanced materials for high voltage insulation systems[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2): 1176-1185. [14] 张晓星, 胡国雄, 伍云健, 等. 氮化硼纳米片改性环氧树脂导热与介电性能的研究[J]. 高电压技术, 2021, 47(2): 645-651. Zhang Xiaoxing, Hu Guoxiong, Wu Yunjian, et al.Study on the thermal and dielectric properties of epoxy resin modified by boron nitride nanosheets[J]. High Voltage Engineering, 2021, 47(2): 645-651. [15] Kim K, Kim J.Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field[J]. International Journal of Thermal Sciences, 2016, 100: 29-36. [16] Awais M, Chen Xiangrong, Dai Chao, et al.Investigating optimal region for thermal and electrical properties of epoxy nanocomposites under high frequencies and temperatures[J]. Nanotechnology, 2022, 33(13): 135705. [17] Bian Wancong, Yao Tong, Chen Ming, et al.The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin[J]. Composites Science and Technology, 2018, 168: 420-428. [18] Fang Lijun, Wu Chao, Qian Rong, et al.Nano-micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength[J]. RSC Advances, 2014, 4(40): 21010-21017. [19] 虞锦洪. 高导热聚合物基复合材料的制备与性能研究[D]. 上海: 上海交通大学, 2012. [20] Wang Zengbin, Iizuka T, Kozako M, et al.Development of epoxy/BN composites with high thermal conductivity and sufficient dielectric breakdown strength part Ⅱ - breakdown strength[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(6): 1973-1983. [21] 谢庆, 张采芹, 闫纪源, 等. 不均匀直流电场下绝缘材料表面电荷积聚与消散特性[J]. 电工技术学报, 2019, 34(4): 817-830. Xie Qing, Zhang Caiqin, Yan Jiyuan, et al.Study on accumulation and dissipation of surface charges of insulating materials under uneven DC field[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 817-830. [22] 王邸博, 唐炬, 陶加贵, 等. 直流电压下闪络及电晕后聚合物表面电荷积聚特性[J]. 高电压技术, 2015, 41(11): 3618-3627. Wang Dibo, Tang Ju, Tao Jiagui, et al.Surface charge accumulation characteristics on polymer after flashover and corona charging under DC voltage[J]. High Voltage Engineering, 2015, 41(11): 3618-3627. [23] 梁英, 靳哲, 张君成. 硅橡胶在不同电晕老化阶段下的表面电荷对沿面闪络的影响[J]. 中国电机工程学报, 2016, 36(22): 6294-6302. Liang Ying, Jin Zhe, Zhang Juncheng.Influence of surface charge on surface flashover of silicone rubber at different corona aging time[J]. Proceedings of the CSEE, 2016, 36(22): 6294-6302. [24] 齐波, 高春嘉, 邢照亮, 等. 直流/交流电压下GIS绝缘子表面电荷分布特性[J]. 中国电机工程学报, 2016, 36(21): 5990-6001, 6044. Qi Bo, Gao Chunjia, Xing Zhaoliang, et al.Distribution characteristic for surface charge on GIS insulator under DC/AC voltage[J]. Proceedings of the CSEE, 2016, 36(21): 5990-6001, 6044. [25] 李大雨, 侯易岑, 张贵新, 等. 直流/交流电压下锥形绝缘子表面电荷积聚特性[J]. 高电压技术, 2019, 45(4): 1086-1092. Li Dayu, Hou Yicen, Zhang Guixin, et al.Surface charge accumulation characteristics of cone-shape insulator under DC/AC[J]. High Voltage Engineering, 2019, 45(4): 1086-1092. [26] Du Boxue, Liu Zhixiang, Guo Yaguang.Effect of direct fluorination on surface charge of polyimide films using repetitive pulsed power[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(4): 1777-1784. [27] Du Boxue, Zhang Jiwei, Gao Yiying.Effect of nanosecond rise time of pulse voltage on the surface charge of Epoxy/TiO2 nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(1): 321-328. [28] Shen Heng, Guo Jing, Wang Hao, et al.Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure[J]. ACS Applied Materials & Interfaces, 2015, 7(10): 5701-5708. [29] Kong Fei, Zhang Shuai, Lin Haofan, et al.Effects of nanosecond pulse voltage parameters on characteristics of surface charge for epoxy resin[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(6): 2058-2066. [30] Kindersberger J, Lederle C.Surface charge decay on insulators in air and sulfurhexafluorid - part II: measurements[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(4): 949-957. [31] 刘孟佳, 周福升, 陈铮铮, 等. 采用等温表面电位衰减法表征LDPE与HDPE内陷阱的分布特性[J]. 中国电机工程学报, 2016, 36(1): 285-291. Liu Mengjia, Zhou Fusheng, Chen Zhengzheng, et al.Characterizing trap distribution in LDPE and HDPE based on isothermal surface potential decay measurement[J]. Proceedings of the CSEE, 2016, 36(1): 285-291. [32] 何金良, 彭思敏, 周垚, 等. 聚合物纳米复合材料的界面特性[J]. 中国电机工程学报, 2016, 36(24): 6596-6605, 6911. He Jinliang, Peng Simin, Zhou Yao, et al.Interface properties of polymer nanocomposites[J]. Proceedings of the CSEE, 2016, 36(24): 6596-6605, 6911. [33] 田付强, 杨春, 何丽娟, 等. 聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J]. 电工技术学报, 2011, 26(3): 1-12. Tian Fuqiang, Yang Chun, He Lijuan, et al.Recent research advancement in dielectric properties and the corresponding mechanism of polymer/inorganic nanocomposite[J]. Transactions of China Electrotechnical Society, 2011, 26(3): 1-12. |
|
|
|