|
|
Impact Analysis of DC Bias on High-Frequency Dynamic Loss and Magnetic Characteristics for Magnetostrictive Materials |
Huang Wenmei1,2, Guo Pingping1,2, Guo Wanli1,2, Weng Ling1,2, Zhou Yan3 |
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China; 3. School of Science Tianjin University of Commerce Tianjin 300130 China |
|
|
Abstract The DC bias magnetic field caninducedistortion and asymmetry of the hysteresis loops for magnetostrictive materials, which affects the loss values and hysteresis characteristics, and the existing magnetic energy loss models cannot accurately characterize and calculate the losses under variable DC bias magnetic fields. Therefore, it is necessary to investigate the influence and mathematical expression on the magnetic properties of magnetostrictive materials when DC bias is applied, which is of great significance to optimizing the output characteristics for high-power magnetostrictive devices. In this paper, under variable DC bias, the dynamic hysteresis loops of Terfenol-D samples at different excitation frequencies and peak magnetic density fluxes are investigated, and the variation law is found when the loss characteristics and hysteresis characteristics parameters are extracted from these hysteresis loops. Based on Bertotti's loss separation theory and measured data, the Levebverg-Marquard algorithm is induced to establish a calculation model for high-frequency losses of magnetostrictive materials under DC bias. This model uses a multiple- parameter regression method to correct the loss coefficients by introducing the DC bias-related terms. The accuracy of the proposed model is verified by comparing the calculated loss values with the experimental values under various working conditions.
|
Received: 23 September 2021
|
|
|
|
|
[1] Rudd J, Myers O.Experimental fabrication and non- destructive testing of carbon fiber beams for delamin- ations using embedded Terfenol-D particles[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(4): 600-609. [2] Wang Wenjie, Thomas P J.Low-frequency active noise control of an underwater large-scale structure with distributed giant magnetostrictive actuators[J]. Sensors and Actuators A: Physical, 2017, 263: 113-121. [3] Sheykholeslami M R, Hojjat Y, Cinquemani S, et al.An approach to design and fabrication of resonant giant magnetostrictive transducer[J]. Smart Structures and Systems, 2016, 17(2): 313-325. [4] Chakrabarti S, Dapino M J.Coupled axisymmetric finite element model of a hydraulically amplified magnetostrictive actuator for active powertrain mounts[J]. Finite Elements in Analysis and Design, 2012, 60: 25-34. [5] Rudd J, Myers O. Experimental fabrication and nondestructive testing of carbon fiber beams for dela- minations using embedded Terfenol-D particles[J/OL]. Journal of Intelligent Material Systems and Structures, https://doi.dox.org/10.1177/1045389X17721022. [6] Srinivasan G, de Vreugd C P, Laletin V M, et al. Resonant magnetoelectric coupling in trilayers of ferromagnetic alloys and piezoelectric lead zirconate titanate: the influence of bias magnetic field[J]. Physical Review B, 2005, 71(18): 184423. [7] 杨蔚柠. 偏置磁场对稀土超磁致伸缩换能器性能的影响研究[D]. 湘潭: 湘潭大学, 2016. [8] Wang Fenghua, Geng Chao, Su Lei.Parameter identification and prediction of Jiles-Atherton model for DC-biased transformer using improved shuffled frog leaping algorithm and least square support vector machine[J]. IET Electric Power Applications, 2015, 9(9): 660-669. [9] Hovorka O, Berger A, Friedman G.Preisach model of exchange bias in antiferromagnetically coupled bilayers[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3129-3131. [10] Liu Ren, Li Lin.Calculation method of magnetic material losses under DC bias using statistical loss theory and energetic hysteresis model[J]. IEEE Transactions on Magnetics, 2019, 55(10): 1-4. [11] 赵志刚, 马习纹, 姬俊安. 考虑频率效应的正弦及直流偏磁条件电工钢磁滞特性模拟及验证[J]. 中国电机工程学报, 2021, 41(23): 8178-8186. Zhao Zhigang, Ma Xiwen, Ji Junan.Simulation and verification on hysteresis characteristics of electrical steel under sinusoidal and DC bias conditions considering frequency effects[J]. Proceedings of the CSEE, 2021, 41(23): 8178-8186. [12] 赵小军, 王瑞, 杜振斌, 等. 交直流混合激励下取向硅钢片磁滞及损耗特性模拟方法[J]. 电工技术学报, 2021, 36(13): 2791-2800. Zhao Xiaojun, Wang Rui, Du Zhenbin, et al.Hysteretic and loss modeling of grain oriented silicon steel lamination under AC-DC hybrid magnetiza- tion[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2791-2800. [13] 孙鹤, 李永建, 刘欢, 等. 非正弦激励下纳米晶铁心损耗的计算方法与实验验证[J]. 电工技术学报, 2022, 37(4): 827-836. Sun He, Li Yongjian, Liu Huan, et al.The calculation method of nanocrystalline core loss under non- sinusoidal excitation and experimental verification[J]. Transactions of China Electrotechnical Society, 2022, 37(4): 827-836. [14] Chen Wei, Huang Xiaoyan, Cao Shihou, et al.Predicting iron losses in soft magnetic materials under DC bias conditions based on steinmetz premag- netization graph[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-4. [15] Zhou Yan, Chen Qimi, Zhang Junbo.Predicting core losses under the DC bias based on the separation model[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(2): 833-840. [16] 翁玲, 常振, 孙英, 等. 不同磁致伸缩材料的高频磁能损耗分析与实验研究[J]. 电工技术学报, 2020, 35(10): 2079-2087. Weng Ling, Chang Zhen, Sun Ying, et al.Analysis and experimental study on high frequency mag- netostrictive energy loss of different magnetostrictive materials[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2079-2087. [17] Huang Wenmei, Wu Xiaoqing, Guo Pingping.Variable coefficient magnetic energy losses calcu- lation model for giant magnetostrictive materials[J]. IEEE Transactions on Magnetics, 2021, 57(2): 1-5. [18] 黄文美, 夏志玉, 郭萍萍, 等. 变温条件下TbDyFe合金高频磁特性和损耗特性分析[J]. 电工技术学报, 2022, 37(1): 133-140. Huang Wenmei, Xia Zhiyu, Guo Pingping, et al.Analysis of high frequency magnetic properties and loss characteristics of TbDyFe alloy under variable temperature[J]. Transactions of China Electrotech- nical Society, 2022, 37(1): 133-140. [19] Bertotti G.General properties of power losses in soft ferromagnetic materials[J]. IEEE Transactions on Magnetics, 1988, 24(1): 621-630. [20] 赵志刚, 毕紫莉. 正弦及谐波激励下铁磁材料损耗模型的改进和验证[J]. 中国电机工程学报, 2022, 42(9): 3452-3459. Zhao Zhigang, Bi Zili.Improvement and verification of ferromagnetic material loss model under sinusoidal and harmonic excitation[J]. Proceedings of the CSEE, 2022, 42(9): 3452-3459. |
|
|
|