|
|
Electromagnetic Characteristics Research of Electrodynamics Suspension Linear Generator under Multi-Condition |
Lü Gang1, Guo Xilin1, Chu Zhiheng2, Zhou Tong1, Yu Wang1 |
1. School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China; 2. CRSC Group Beijing 100044 China |
|
|
Abstract The Linear generator is the key equipment for contactless on-board power supply in the high-speed maglev system, and its output characteristics under multiple working conditions are the leading indicators of power generation capacity. The three-dimensional magnetic flux of the superconducting magnet is characterized by the space harmonic method, and the magnetomotive force distribution model of the linear generator is established. By analyzing the electromagnetic coupling relationship between the superconducting magnet and the suspension coil of the track-side wall, the expressions of the suspension coil current and the magnetic flux density of the suspension coil harmonic magnetic field are obtained. Further, the harmonic magnetic field of the suspension coil is used as the current collector coil to excite, and the numeric analytical expression for the induced electromotive force of the linear generator under multiple working conditions is deduced. Finally, compared with the test data of the Yamanashi Line in Japan, the accuracy of the magnetomotive force distribution model and the electromagnetic analytical model is verified. This work provides a theoretical basis for designing and controlling of linear generators for high-speed maglev systems.
|
Received: 29 March 2022
|
|
|
|
|
[1] 熊嘉阳, 沈志云. 中国高速铁路的崛起和今后的发展[J]. 交通运输工程学报, 2021, 21(5): 6-29. Xiong Jiayang, Shen Zhiyun.Rise and future develop- ment of Chinese high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 6-29. [2] 吕刚. 直线电机在轨道交通中的应用与关键技术综述[J]. 中国电机工程学报, 2020, 40(17): 5665-5675. Lü Gang.Review of the application and key tech- nology in the linear motor for the rail transit[J]. Proceedings of the CSEE, 2020, 40(17): 5665-5675. [3] 朱进权, 葛琼璇, 孙鹏琨, 等. 高速磁悬浮列车在双端供电模式下的电流控制策略[J]. 电工技术学报, 2021, 36(23): 4937-4947. Zhu Jinquan, Ge Qiongxuan, Sun Pengkun, et al.Current control strategy for high-speed maglev in the double feeding mode[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 4937-4947. [4] 郭亮, 卢琴芬, 叶云岳. 磁浮列车用直线发电机感应电动势的分析计算[J]. 电工技术学报, 2005, 20(11): 1-5. Guo Liang, Lu Qinfen, Ye Yunyue.Analysis and calculation of the linear generator EMF in maglev[J]. Transactions of China Electrotechnical Society, 2005, 20(11): 1-5. [5] Andriollo M, Martinelli C, Morini A, et al.Opti- mization of the on-board linear generator in EMS- MAGLEV trains[J]. IEEE Transactions on Magnetics, 1997, 33(5): 4224-4226. [6] Kashiwagi T, Murai T, Yamamoto T, et al.Control of the output power and power factor in a converter of a linear generator for the maglev system[J]. IEEJ Transactions on Industry Applications, 2004, 124(10): 1029-1035. [7] Murai T, Sakamoto Y, Hasegawa H.High power factor converter control by instantaneous single-phase current for a maglev system linear generator[C]// Power Conversion Conference-Nagoya, Nagoya, Japan, 2007: 1158-1163. [8] Sakamoto Y, Murai T, Kashiwagi T, et al.The development of linear generator system combined with magnetic damping function[J]. IEEJ Transa- ctions on Industry Applications, 2006, 126(2): 192-198. [9] Murai T, Hasegawa H, Fujiwara S.Improvement of inductive power collection in null-flux maglev system[J]. Electrical Engineering in Japan, 1998, 122(2): 48-60. [10] Yamamoto T, Murai T, Hasegawa H, et al.Develop- ment of distributed-type linear generator with damping control[J]. Quarterly Report of RTRI, 2000, 41(2): 83-88. [11] Murai T, Sakamoto Y.Sensor-less combined vertical and lateral magnetic damper by using linear gener- ator[J]. IEEJ Transactions on Industry Applications, 2006, 126(3): 269-275. [12] 王一宇, 蔡尧, 宋旭亮, 等. 零磁通式电动悬浮等效模拟系统的特性分析与实验[J]. 电工技术学报, 2021, 36(8): 1628-1635. Wang Yiyu, Cai Yao, Song Xuliang, et al.Charac- teristic analysis and experiment of the equivalent simulation system for null-flux electrodynamic suspension[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1628-1635. [13] Lü Gang, Liu Yaqing, Zhou Tong, et al.Analysis of suspension and guidance system of EDS maglev based on a novel magnetomotive force model[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(3): 2923-2933. [14] Lü Gang, Liu Yaqing, Zhang Zhixuan, et al.Numerical analysis of the rotational magnetic springs for EDS maglev train[J]. CES Transactions on Elec- trical Machines and Systems, 2022, 6(1): 60-66. [15] 章九鼎, 卢琴芬. 长定子直线同步电机齿槽效应的计算与影响[J]. 电工技术学报, 2021, 36(5): 964-972, 1026. Zhang Jiuding, Lu Qinfen.Calculation and influences of cogging effects in long-stator linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 964-972, 1026. [16] 秦伟, 范瑜, 徐洪泽, 等. 高温超导运动磁场电磁Halbach初级结构直线感应磁悬浮电机[J]. 电工技术学报, 2018, 33(23): 5427-5434. Qin Wei, Fan Yu, Xu Hongze, et al.A linear induction maglev motor with HTS traveling magnetic electromagnetic halbach array[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5427-5434. [17] Murai T, Hasegawa H, Yamamoto T, et al.Active magnetic damper using linear generator[J]. IEEJ Transactions on Industry Applications, 1999, 119(11): 1371-1376. [18] 李征, 邱书恒, 陈飞雪, 等. 基于预测算法的自由活塞内燃直线发电机高效控制策略[J]. 电工技术学报, 2022, 37(增刊1): 43-49. Li Zheng, Qiu Shuheng, Chen Feixue, et al.Efficient control strategy based on predictive algorithm for free piston linear generator[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 43-49. [19] 刘娜, 谭亦旻, 莫伟强, 等. 基于模拟退火算法的Halbach直线发电机优化设计[J]. 电工技术学报, 2021, 36(6): 1210-1218. Liu Na, Tan Yimin, Mo Weiqiang, et al.Optimization design of halbach linear generator with simulated annealing algorithm[J]. Transactions of China Elec- trotechnical Society, 2021, 36(6): 1210-1218. |
|
|
|