|
|
Regional Voltage-Based Uneven Heating Model of Lithium-Ion Battery |
Liu Suzhen1,2, Chen Jingjing1,2, Zhang Chuang1,2, Jin Liang1,2, Yang Qingxin1 |
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China |
|
|
Abstract The non-uniformity of the temperature spatial distribution of lithium-ion battery increases with the increase of the discharge rate, which seriously affects the battery life and safety. Aiming at the uneven temperature distribution during the discharge of lithium-ion battery, a new non-uniform heating model based on regional voltage is proposed to predict the battery temperature distribution in real time. Considering the battery size and thermal characteristics, the battery is divided into nine regions and the open circuit voltage test is carried out. The surface temperature change of each area is recorded in real time. Calculate the regional voltage using the surface temperature and ambient temperature data measured during every 10% of the state of charge (SOC) drops. Obtain the regional heat production of the battery according to the regional voltage, and establish a three-dimensional simulation model to obtain the spatial distribution of battery temperature. The non-uniform heating model is used to predict the spatial evolution of battery temperature when the discharge rate is 0.5C, 1C, 2C, 3C and 4C. The simulation results show that the model captures the uneven distribution of temperature. And the experimental results verify that the temperature errors are within 1℃, the relative errors are within 5%. It shows that the model can effectively monitor the temperature distribution.
|
Received: 12 August 2021
|
|
|
|
|
[1] 佟明昊, 程明, 许芷源, 等. 电动汽车用车载集成式充电系统若干关键技术问题及解决方案[J]. 电工技术学报, 2021, 36(24): 5125-5142. Tong Minghao, Cheng Ming, Xu Zhiyuan, et al.Key issues and solutions of integrated on-board chargers for electric vehicles[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5125-5142. [2] 孙金磊, 朱春波, 李磊, 等. 电动汽车动力电池温度在线估计方法[J]. 电工技术学报, 2017, 32(7): 197-203. Sun Jinlei, Zhu Chunbo, Li Lei, et al.Online temperature estimation method for electric vehicle power battery[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 197-203. [3] 孙丙香, 刘佳, 韩智强, 等. 不同区间衰退路径下锂离子电池的性能相关性及温度适用性分析[J]. 电工技术学报, 2020, 35(9): 2063-2073. Sun Bingxiang, Liu Jia, Han Zhiqiang, et al.Performance correlation and temperature applicability of Li-ion batteries under different range degradation paths[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2063-2073. [4] Srinivasan R, Demirev P A, Carkhuff B G.Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention[J]. Journal of Power Sources, 2018, 405: 30-36. [5] 范文杰, 徐广昊, 于泊宁, 等. 基于电化学阻抗谱的锂离子电池内部温度在线估计方法研究[J]. 中国电机工程学报, 2021, 41(9): 3283-3292. Fan Wenjie, Xu Guanghao, Yu Boning, et al.On-line estimation method for internal temperature of lithium-ion battery based on electrochemical impedance spectroscopy[J]. Proceedings of the CSEE, 2021, 41(9): 3283-3292. [6] Raijmakers L H J, Danilov D L, Eichel R A, et al. A review on various temperature-indication methods for Li-ion batteries[J]. Applied Energy, 2019, 240: 918-945. [7] 潘海鸿, 张沫, 王惠民, 等. 基于多影响因素建立锂离子电池充电内阻的动态模型[J]. 电工技术学报, 2021, 36(10): 2199-2206. Pan Haihong, Zhang Mo, Wang Huimin, et al.Establishing a dynamic model of lithium-ion battery charging internal resistance based on multiple factors[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2199-2206. [8] Ma Shuai, Jiang Modi, Tao Peng, et al.Temperature effect and thermal impact in lithium-ion batteries: a review[J]. Progress in Natural Science: Materials International, 2018, 28(6): 653-666. [9] Nascimento M, Ferreira M S, Pinto J L.Temperature fiber sensing of Li-ion batteries under different environmental and operating conditions[J]. Applied Thermal Engineering, 2019, 149: 1236-1243. [10] Lee C Y, Lee S J, Hung Y M, et al.Integrated microsensor for real-time microscopic monitoring of local temperature, voltage and current inside lithium ion battery[J]. Sensors and Actuators A: Physical, 2017, 253: 59-68. [11] Wang Xueyuan, Wei Xuezhe, Chen Qijun, et al.Lithium-ion battery temperature on-line estimation based on fast impedance calculation[J]. Journal of Energy Storage, 2019, 26: 100952. [12] Veth C, Dragicevic D, Merten C.Thermal characterizations of a large-format lithium ion cell focused on high current discharges[J]. Journal of Power Sources, 2014, 267: 760-769. [13] 庞辉, 郭龙, 武龙星, 等. 考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J]. 电工技术学报, 2021, 36(10): 2178-2189. Pang Hui, Guo Long, Wu Longxing, et al.An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2178-2189. [14] Strobridge F C, Orvananos B, Croft M, et al.Mapping the inhomogeneous electrochemical reaction through porous LiFePO4-electrodes in a standard coin cell battery[J]. Chemistry of Materials, 2015, 27(7): 2374-2386. [15] 熊瑞, 李幸港. 基于双卡尔曼滤波算法的动力电池内部温度估计[J]. 机械工程学报, 2020, 56(14): 146-151. Xiong Rui, Li Xinggang.Battery internal temperature estimation method through double extended Kalman filtering algorithm[J]. Journal of Mechanical Engineering, 2020, 56(14): 146-151. [16] Han Xuebing, Ouyang Minggao, Lu Languang, et al.A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification[J]. Journal of Power Sources, 2014, 251: 38-54. [17] Onda K, Ohshima T, Nakayama M, et al.Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J]. Journal of Power Sources, 2006, 158(1): 535-542. [18] Xie Yi, He Xiaojing, Hu Xiaosong, et al.An improved resistance-based thermal model for a pouch lithium-ion battery considering heat generation of posts[J]. Applied Thermal Engineering, 2020, 164: 114455 [19] Li Junqiu, Sun Danni, Jin Xin, et al.Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation[J]. Applied Energy, 2019, 254: 113574. [20] Ding Xiaofeng, Zhang Donghuai, Cheng Jiawei, et al.An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles[J]. Applied Energy, 2019, 254: 113615. [21] 刘新天, 张胜, 何耀, 等. 基于简化可变参数热模型的锂电池内部温度估计[J]. 华南理工大学学报(自然科学版), 2019, 47(4): 44-52. Liu Xintian, Zhang Sheng, He Yao, et al.Lithium battery internal temperature estimation based on simplified variable parameter thermal model[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(4): 44-52 [22] Jung W, Kim H K, Kim M, et al.Spatial measurement of heat generation in a pouch-type lithium-ion battery[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(8): 1085-1089. [23] Patil M S, Seo J H, Panchal S, et al.Numerical study on sensitivity analysis of factors influencing liquid cooling with double cold-plate for lithium-ion pouch cell[J]. International Journal of Energy Research, 2021, 45(2): 2533-2559. [24] Hosseinzadeh E, Genieser R, Worwood D, et al.A systematic approach for electrochemical-thermal modelling of a large format lithium-ion battery for electric vehicle application[J]. Journal of Power Sources, 2018, 382: 77-94. [25] Mastali M, Foreman E, Modjtahedi A, et al.Electrochemical-thermal modeling and experimental validation of commercial graphite/LiFePO4 pouch lithium-ion batteries[J]. International Journal of Thermal Sciences, 2018, 129: 218-230. |
|
|
|