|
|
Study on Trap Properties of Nano-MgO/Epoxy Resin Composites and Its Influence on Electrical Tree Properties |
Cheng Zixia1, Xing Weiwei1, Zhang Yunxiao2, Zhou Yuanxiang2,3, Teng Chenyuan2 |
1. School of Electrical Engineering Zhengzhou University Zhengzhou 450001 China; 2. State Key Laboratory of Control and Simulation of Power System and Generation Equipment Department of Electrical Engineering Tsinghua University Beijing 100084 China; 3. The Wind Solar Storage Division of State Key Laboratory of Power System and Generation Equipment School of Electrical Engineering Xinjiang University Urumqi 830047 china |
|
|
Abstract With the continuous improvement of voltage level, the failure of insulation materials caused by the aging of electrical tree is becoming more and more serious. In order to study the effect of nano-MgO on the aging of epoxy resin electrical tree, nano-MgO/epoxy resin composites with different mass fractions (0~1%) were prepared, and the initiation and growth process of electrical tree were observed. The results show that the electrical tree resistance of nano-MgO/epoxy resin composites increases with the increase of filling ratio under slight filling. When the mass fraction of nano-MgO is 1%, the tree initiation probability of nano-MgO/epoxy resin composites is reduced by 45%, the electrical tree length is reduced to about 1/3 of that of pure epoxy resin, and the corresponding AC breakdown field strength is increased by 14.1%. According to the analysis of the dielectric properties and trap properties, with the increase of filling ratio, the dielectric constant of the composite decreases and the trap energy level deepens. With the addition of nano-MgO, the trap energy level of the composite was increased, and the carrier mobility and concentration were decreased, which improved the electrical tree resistance of nano-MgO/epoxy resin composite.
|
Received: 20 July 2021
|
|
|
|
|
[1] Teng Chenyuan, Zhou Yuanxiang, Li Shaohua, et al.Regulation of temperature resistivity characteristics of insulating epoxy composite by incorporating positive temperature coefficient material[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(2): 512-520. [2] 杨国清, 张埼炜, 王德意, 等. ZnO/环氧树脂复合材料的耐电树枝能力[J]. 高电压技术, 2019, 45(1): 91-96. Yang Guoqing, Zhang Qiwei, Wang Deyi, et al.Ability of impedance on the electrical tree of ZnO/Epoxy composites[J]. High Voltage Engineering, 2019, 45(1): 91-96. [3] 李盛涛, 郑晓泉. 聚合物电树枝化[M]. 北京: 机械工业出版社, 2006. [4] Zhou Yuanxiang, Zhang Yunxiao, Zhang Ling, et al.Electrical tree initiation of silicone rubber after thermal aging[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(2): 748-756. [5] Zhang Yunxiao, Zhang Ling, Zhou Yuanxiang, et al.DC electrical tree initiation in silicone rubber under temperature gradient[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(3): 1142-1150. [6] Lewis T J.Nanometric dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5): 812-825. [7] 田付强, 杨春, 何丽娟, 等. 聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J]. 电工技术学报, 2011, 26(3): 1-12. Tian Fuqiang, Yang Chun, He Lijuan, et al.Recent research advancement in dielectric properties and the corresponding mechanism of polymer/inorganic nanocomposite[J]. Transactions of China Electrotechnical Society, 2011, 26(3): 1-12. [8] 闫双双, 李媛媛, 田慕琴, 等. 不同填料浓度下环氧树脂基纳米二氧化硅复合材料中电树枝生长特性[J]. 高电压技术, 2019, 45(12): 3860-3868. Yan Shuangshuang, Li Yuanyuan, Tian Muqin, et al.Growth characteristics of electrical trees in epoxy resin-based nano-SiO2 composites with different filler concentrations[J]. High Voltage Engineering, 2019, 45(12): 3860-3868. [9] 许珂. 纳米氧化镁制备技术研究[D]. 郑州: 郑州大学, 2008. [10] 王威望, 李盛涛, 刘文凤. 聚合物纳米复合电介质的击穿性能[J]. 电工技术学报, 2017, 32(16): 25-36. Wang Weiwang, Li Shengtao, Liu Wenfeng.Dielectric breakdown of polymer nanocomposites[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 25-36. [11] 刘倩. 聚乙烯纳米复合材料击穿场强与电树枝特性关系研究[D]. 哈尔滨: 哈尔滨理工大学, 2018. [12] 王雅妮, 李光道, 吴建东, 等. 添加纳米MgO对交联聚乙烯中直流接地电树枝的影响[J]. 南方电网技术, 2015, 9(10): 26-30. Wang Yani, Li Guangdao, Wu Jiandong, et al.Effect of nano-MgO addition on grounded DC tree in cross-linked polyethylene[J]. Southern Power System Technology, 2015, 9(10): 26-30. [13] 彭苏蔓, 祝曦, 吴建东, 等. 温度和电场对XLPE与纳米MgO/XLPE电树枝生长过程中局部放电特性的影响[J]. 中国电机工程学报, 2020, 40(12): 4033-4043. Peng Suman, Zhu Xi, Wu Jiandong, et al.Effect of temperature and electric field on partial discharge characteristics in XLPE and nano-MgO/XLPE during electrical tree growth[J]. Proceedings of the CSEE, 2020, 40(12): 4033-4043. [14] 田付强. 聚乙烯基无机纳米复合电介质的陷阱特性与电性能研究[D]. 北京: 北京交通大学, 2012. [15] 李志坚, 张莹, 田猛, 等. 直流-温度复合场下环氧树脂内电树枝生长特性研究现状[J]. 绝缘材料, 2021, 54(3): 10-17. Li Zhijian, Zhang Ying, Tian Meng, et al.Research status of electrical tree growth characteristics in epoxy resin under DC-temperature compound field[J]. Insulating Materials, 2021, 54(3): 10-17. [16] 周远翔, 张云霄, 张旭, 等. 热老化时间对硅橡胶电树枝起始特性的影响[J]. 高电压技术, 2014, 40(4): 979-986. Zhou Yuanxiang, Zhang Yunxiao, Zhang Xu, et al.Influence of thermal aging time on electrical tree initiation of silicone rubber[J]. High Voltage Engineering, 2014, 40(4): 979-986. [17] 万晗晖. 聚乙烯类绝缘复合材料击穿与电树特性实验及仿真研究[D]. 哈尔滨: 哈尔滨理工大学, 2018. [18] 杜伯学, 张苗苗, 姜恵兰, 等. 环氧树脂在低温环境下的电树枝生长特性[J]. 高电压技术, 2016, 42(2): 478-484. Du Boxue, Zhang Miaomiao, Jiang Huilan, et al.Growth characteristics of electrical tree in epoxy resin under low temperature[J]. High Voltage Engineering, 2016, 42(2): 478-484. [19] 周福文. 微纳米复合涂层对环氧树脂表面电荷动态特性影响的研究[D]. 北京: 华北电力大学(北京), 2018. [20] 李成, 窦晓亮, 曲鹏, 等. 基于提高BT/PVDF复合材料介电常数的材料结构设计与性能研究[J]. 稀有金属材料与工程, 2018, 47(增刊1): 420-423. Li Cheng, Dou Xiaoliang, Qu Peng, et al.Structure design and performance research based on enhancing the dielectric constant of BT/PVDF composites[J]. Rare Metal Materials and Engineering, 2018, 47(S1): 420-423. [21] 李盛涛, 谢东日, 闵道敏. 聚丙烯/Al2O3纳米复合介质直流击穿特性与电荷输运仿真研究[J]. 中国电机工程学报, 2019, 39(20): 6122-6130, 6193. Li Shengtao, Xie Dongri, Min Daomin.Numerical simulation on space charge transport and DC breakdown properties of polypropylene/Al2O3 nanocomposites[J]. Proceedings of the CSEE, 2019, 39(20): 6122-6130, 6193. [22] 杨国清, 黎洋, 王德意, 等. 超支化聚酯改性纳米SiO2/环氧树脂的介电特性[J]. 电工技术学报, 2019, 34(5): 1106-1115. Yang Guoqing, Li Yang, Wang Deyi, et al.Effect of hyperbranched polyester grafting nanosilica on dielectric properties of epoxy resin[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1106-1115. [23] Tanaka T, Greenwood A. Effects of charge injection and extraction on tree initiation in polyethylene[J]. IEEE Transactions on Power Apparatus and Systems, 1978, PAS-97(5): 1749-1759. [24] 李春阳, 韩宝忠, 张城城, 等. 电压稳定剂提高PE/XLPE绝缘耐电性能研究综述[J]. 中国电机工程学报, 2017, 37(16): 4850-4864, 4911. Li Chunyang, Han Baozhong, Zhang Chengcheng, et al.Review of voltage stabilizer improving the electrical strength of PE/XLPE[J]. Proceedings of the CSEE, 2017, 37(16): 4850-4864, 4911. [25] 王璐璐. MgO/LDPE纳米复合材料耐电树性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2011. [26] 廖瑞金, 柳海滨, 柏舸, 等. 纳米SiO2/芳纶绝缘纸复合材料的空间电荷特性和介电性能[J]. 电工技术学报, 2016, 31(12): 40-48. Liao Ruijin, Liu Haibin, Bai Ge, et al.Space charge characteristics and dielectric properties of nano-SiO2/aramid paper composite[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 40-48. [27] 闫双双. 纳米二氧化硅/环氧树脂复合材料的电树枝及击穿特性研究[D]. 太原: 太原理工大学, 2018. [28] Tanaka T.Dielectric nanocomposites with insulating properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(5): 914-928. [29] 廖瑞金, 项敏, 袁媛, 等. 纳米Al2O3掺杂对绝缘纸的空间电荷及陷阱能级分布特征的影响[J]. 高电压技术, 2019, 45(3): 681-690. Liao Ruijin, Xiang Min, Yuan Yuan, et al.Effects of nano-Al2O3 on space charge behavior and trap energy distibution characteristics of insulation paper[J]. High Voltage Engineering, 2019, 45(3): 681-690. |
|
|
|