|
|
Model Free Predictive Current Control of Vienna Rectifier Based on Space Vector Modulation |
Zhang Yongchang1, Qu Qiyan2, Yang Haitao2 |
1. School of Electrical and Electronic Engineering North China Electric Power University Beijing 102206 China; 2. Power Electronics and Motor Drive Engineering Research Center of Beijing North China University of Technology Beijing 100144 China |
|
|
Abstract The three-phase three-level Vienna rectifier has the advantages of low switching stress and high power factor. In order to eliminate the dependence of traditional deadbeat predictive current control (DPCC) on system parameters, a model-free predictive current control (MFPCC) method is proposed in this paper. The features of the proposed method include using an ultra-local model instead of the conventional accurate model of the Vienna rectifier, and the online updating of the gain and the dynamic part of the ultra-local model based on the voltage/current information in the past two control periods. The proposed method is combined with DPCC to calculate the reference voltage vector at the next instant and space vector modulation (SVM) is used to generating the gating pulses. The proposed method has strong robustness, small amount of calculation, and good steady and dynamic performance. The proposed method is compared to conventional DPCC in terms of steady-state and dynamic performance under the condition of accurate and inaccurate model parameters. Simulation and experiment results verify the superiority of the proposed method.
|
Received: 01 November 2021
|
|
|
|
|
[1] Kolar J, Zach F.A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules[J]. IEEE Transactions on Industrial Electronics, 1997, 44(4): 456-467. [2] 李萍, 王久和, 李建国, 等. 单向混合整流器无源电流控制[J]. 电工技术学报, 2020, 35(21): 4511-4523. Li Ping, Wang Jiuhe, Li Jianguo, et al.A passivity-based current control strategy for unidirectional hybrid rectifier[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4511-4523. [3] 郝振洋, 徐子梁, 陈宇, 等. 航空Vienna整流器故障诊断与容错控制[J]. 电工技术学报, 2020, 35(24): 5152-5163. Hao Zhenyang, Xu Ziliang, Chen Yu, et al.Fault diagnosis and fault tolerant control for aviation Vienna rectifier[J]. Transactions of China Electrotechnical Society, 2020, 35(24): 5152-5163. [4] 肖蕙蕙, 苏新柱, 郭强, 等. 三相Vienna整流器无网压传感器预测电流控制策略[J]. 电工技术学报, 2021, 36(6): 1304-1312. Xiao Huihui, Su Xinzhu, Guo Qiang, et al.Predictive current control of three-phase Vienna rectifier without grid voltage sensors[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1304-1312. [5] Rajendran G, Vaithilingam C, Misron N, et al.Voltage oriented controller based Vienna rectifier for electric vehicle charging stations[J]. IEEE Access, 2021, 9: 50798-50809. [6] 杨頔, 姚钢, 周荔丹. 功率变化环境下的四线制Vienna整流器优化联合控制方法[J]. 电工技术学报, 2021, 36(2): 305-319. Yang Di, Yao Gang, Zhou Lidan.An improved control method of 4-wire Vienna rectifier considering power fluctuation[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 305-319. [7] 张锦, 於锋, 高磊, 等. Vienna整流器模型预测电流控制优化方案研究[J]. 电源学报, 2020, 18(5): 110-117. Zhang Jin, Wu Feng, Gao Lei, et al.Research on optimal scheme of Vienna rectifier model predictive current control[J]. Journal of Power Supply, 2020, 18(5): 110-117. [8] Huang Xiping, Yang Zekun, Chen Guitao, et al.Model predictive control of current with fixed switching frequency on VEINNA rectifier[C]//2020 Chinese Control and Decision Conference (CCDC), Hefei, 2020: 2392-2397. [9] 王久和. 电压型PWM整流器的非线性控制[M]. 北京: 机械工业出版社, 2015. [10] Lin Chengkai, Liu Tianhua, Yu Jente, et al.Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique[J]. IEEE Transactions on Industrial Electronics, 2014, 61(2): 667-681. [11] 张虎, 张永昌, 刘家利, 等. 基于单次电流采样的永磁同步电机无模型预测电流控制[J]. 电工技术学报, 2017, 32(2): 180-187. Zhang Hu, Zhang Yongchang, Liu Jiali, et al.Model-free predictive current control of permanent magnet synchronous motor based on single current sampling[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 180-187. [12] 张永昌, 焦健, 刘杰. 电压型PWM整流器无模型预测电流控制[J]. 电气工程学报, 2018, 13(6): 1-6. Zhang Yongchang,Jiao Jian,Liu Jie.Model-free predictive current control of voltage type PWM rectifier[J]. Journal of Electrical Engineering, 2018, 13(6): 1-6. [13] Zhang Yongchang, Jin Jialin, Huang Lanlan.Model-free predictive current control of PMSM drives based on extended state observer using ultralocal model[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 993-1003. [14] 王涛, 陈昌松, 段善旭, 等. 用于改善电流过零点畸变的Vienna整流器空间矢量调制策略[J]. 电工技术学报, 2019, 34(18): 3854-3864. Wang Tao, Chen Changsong, Duan Shanxu, et al.Space vector modulation strategy of Vienna rectifier for improving current zero-crossing distortion[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3854-3864. [15] 杨玉波, 谢运祥. 三电平Vienna整流器的一种简化SVPWM算法[J]. 电气应用, 2015, 34(11): 54-57. Yang Yubo,Xie Yunxiang.A simplified SVPWM algorithm for three-level Vienna rectifier[J]. Electrotechnical Application, 2015, 34(11): 54-57. [16] Zhang Yongchang, Wang Xing, Yang Haitao, et al.Robust predictive current control of induction motors based on linear extended state observer[J]. Chinese Journal of Electrical Engineering, 2021, 7(1): 94-105. [17] Zhang Yongchang, Min Zeyu.Model-free predictive current control of a pwm rectifier based on space vector modulation under unbalanced and distorted grid conditions[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(2): 2319-2329. |
|
|
|