|
|
Analysis and Compensation of Current Harmonics in Symmetrical Multiphase Machines in Fault-Tolerant Operation against Open-Phase Faults |
Sun Jiawei, Zheng Zedong, Li Chi, Wang Kui, Li Yongdong |
State Key Lab of Control and Simulation of Power System and Generation Equipment Tsinghua University Beijing 100084 China |
|
|
Abstract Multiphase machines have the advantages of high reliability, high fault-tolerant ability and high control flexibility. This paper studies the characteristics and compensation of low order current harmonics in multiphase machines during open-phase fault-tolerant operation. For a specific order current harmonic, positive and negative sequence components exist at the same time in all the subspaces in open-phase fault-tolerant operation. Traditional current harmonic compensation methods only compensate the selected order current harmonic in a specific subspace, therefore have seriously degraded performance in fault-tolerant operation. This paper proposes an improved current harmonic compensation method. With the Generalized Symmetrical Components Transformation and double PI controllers, positive and negative sequence current harmonics can be compensated in all the subspaces, which guarantees the good compensation performance in fault-tolerant operation. Finally, experiments were done on a nine-phase induction machine to verify the effectiveness of the proposed method and experimental results show the selected current harmonics can be completely compensated. Additional losses and torque ripple caused by current harmonics are reduced.
|
Received: 11 August 2021
|
|
|
|
|
[1] Levi E.Multiphase electric machines for variable-speed applications[J]. IEEE Transactions on Industrial Electronics, 2008, 55(5): 1893-1909. [2] Duran M J, Barrero F.Recent advances in the design, modeling, and control of multiphase machines—part II[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 459-468. [3] 田代宗, 孙宇光, 王善铭, 等. 多相整流永磁同步发电机绕组内部相间短路的故障分析[J]. 电工技术学报, 2020, 35(6): 1262-1271. Tian Daizong, Sun Yuguang, Wang Shanming, et al.Analysis of stator internal phase-to-phase short-circuit in the multiphase permanent magnet synchronous generator with rectifier load system[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1262-1271. [4] 林晓刚, 黄文新, 姜文, 等. 共母线开绕组永磁同步电机缺相容错型直接转矩控制[J]. 电工技术学报, 2020, 35(24): 5064-5074. Lin Xiaogang, Huang Wenxin, Jiang Wen, et al.Fault-tolerant direct torque control for open-end winding permanent magnet synchronous motor with common DC bus under open phase circuit[J]. Transactions of China Electrotechnical Society, 2020, 35(24): 5064-5074. [5] 彭忠, 郑泽东, 刘自程, 等. 基于虚拟绕组和全阶观测器的五相感应电机无速度传感器容错控制策略[J]. 电工技术学报, 2018, 33(21): 4949-4961. Peng Zhong, Zheng Zedong, Liu Zicheng, et al.A novel sensorless fault-tolerant control of five-phase induction machine using virtual winding and full-order observer[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 4949-4961. [6] Baneira F, Doval-Gandoy J, Yepes A G, et al.Control strategy for multiphase drives with minimum losses in the full torque operation range under single open-phase fault[J]. IEEE Transactions on Power Electronics, 2017, 32(8): 6275-6285. [7] Liang Zhe, Liang Deliang, Kou Peng, et al.Postfault control and harmonic current suppression for a symmetrical dual three-phase SPMSM drive under single-phase open-circuit fault[J]. IEEE Access, 8: 67674-67686. [8] Huang Wentao, Hua Wei, Chen Fuyang, et al.Enhanced model predictive torque control of fault-tolerant five-phase permanent magnet synchronous motor with harmonic restraint and voltage preselection[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 6259-6269. [9] Yepes A G, Malvar J, Vidal A, et al.Current harmonics compensation based on multiresonant control in synchronous frames for symmetrical-phase machines[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2708-2720. [10] 孟繁庆, 易新强, 刘海涛, 等. 三次谐波注入下多相感应电机稳态性能分析[J]. 电工技术学报, 2020, 35(16): 3396-3405. Meng Fanqing, Yi Xinqiang, Liu Haitao, et al.Steady-state performance analysis of multiphase induction motor with third-order harmonic injection[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3396-3405. [11] 肖阳, 宋金元, 屈仁浩, 等. 变频谐波对电机振动噪声特性的影响规律[J]. 电工技术学报, 2021, 36(12): 2607-2615. Xiao Yang, Song Jinyuan, Qu Renhao, et al.The effect of harmonics on electromagnetic vibration and noise characteristic in inverter-duty motor[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2607-2615. [12] Geng Yiwen, Lai Zou, Li Yonggang, et al.Sensorless fault-tolerant control strategy of six-phase induction machine based on harmonic suppression and sliding mode observer[J]. IEEE Access, 7: 110086-110102. [13] Huang Qiuliang, Chen Yong, Xu Li.Fault-tolerant control strategy for five-phase PMSM with third-harmonic current injection[J]. IEEE Access, 6: 58501-58509. [14] Liu Guohai, Lin Zhipeng, Zhao Wenxiang, et al.Third harmonic current injection in fault-tolerant five-phase permanent-magnet motor drive[J]. IEEE Transactions on Power Electronics, 2018, 33(8): 6970-6979. [15] Arafat A K M, Choi S. Active Current harmonic suppression for torque ripple minimization at open-phase faults in a five-phase PMa-SynRM[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 922-931. [16] Liu Zicheng, Zheng Zedong, Xu Lie, et al.Current balance control for symmetrical multiphase inverters[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 4005-4012. [17] Etxeberria-Otadui I, Lopez De Heredia A, Gaztanaga H, et al. A single synchronous frame hybrid (SSFH) multifrequency controller for power active filters[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1640-1648. [18] 陈杰, 章新颖, 闫震宇, 等. 基于虚拟阻抗的逆变器死区补偿及谐波电流抑制分析[J]. 电工技术学报, 2021(8): 1671-1680. Chen Jie, Zhang Xinying, Yan Zhenyu, et al.Dead-time effect and background grid-voltage harmonic suppression methods for inverters with virtual impedance control[J]. Transactions of China Electrotechnical Society, 2021(8): 1671-1680. [19] 倪瑞政, 李庭, 陈杰, 等. 一种脉冲式死区补偿方法的研究[J]. 电工技术学报, 2019, 34(增刊2): 553-559. Ni Ruizheng, Li Ting, Chen Jie, et al.Research on a pulse dead zone compensation method[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 553-559. [20] Shen Zewei, Jiang Dong.Dead-time effect compensation method based on current ripple prediction for voltage-source inverters[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 971-983. [21] Grandi G, Loncarski J.Analysis of dead-time effects in multi-phase voltage source inverters[C]//6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012), Bristol, 2012: 1-6. [22] Fortescue C L. Method of symmetrical co-ordinates applied to the solution of polyphase networks[J]. Transactions of the American Institute of Electrical Engineers, 1918, XXXVII(2): 1027-1140. [23] 缪惠宇, 梅飞, 张宸宇, 等. 基于虚拟阻抗的虚拟同步整流器三相不平衡控制策略[J]. 电工技术学报, 2019, 34(17): 3622-3630. Miao Huiyu, Mei Fei, Zhang Chenyu, et al.Three phase unbalanced control strategy for virtual synchronous rectifier based on virtual impedance[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3622-3630. [24] Sun Jiawei, Liu Zicheng, Zheng Zedong, et al.An online global fault-tolerant control strategy for symmetrical multiphase machines with minimum losses in full torque production range[J]. IEEE Transactions on Power Electronics, 2020, 35(3): 2819-2830. [25] Stoyanov L, Lazarov V, Zarkov Z, et al.Influence of skin effect on stator windings resistance of AC machines for electric drives[C]//2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA), Varna, Bulgaria, 2019, : 1-6. [26] Debruyne C, Desmet J, Derammelaere S, et al.Derating factors for direct online induction machines when supplied with voltage harmonics: a critical view[C]//2011 IEEE International Electric Machines & Drives Conference, Niagara Falls, ON, Canada, 2011: 1048-1052. |
|
|
|