|
|
An Improved Physics-Based Circuit Model for SiC MOSFET |
Li Xin1, Luo Yifei1, Shi Zenan2, Wang Ruitian1, Xiao Fei1 |
1. National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China; 2. College of Electrical Engineering Xi’an Jiaotong University Xi’an 710049 China |
|
|
Abstract SiC MOSFET has advantages of high frequency, high voltage and high temperature due to its material advantages in bandgap width, breakdown electric field and electron saturation speed. However, the special material, structure and high-switching speed of SiC MOSFET make the internal physical mechanism of the device more complicated during the switching transient. The traditional SiC MOSFET model adopted the modeling methods of some Si devices, and it is difficult to accurately evaluate the dynamic and static characteristics of the device. Therefore, an improved physics-based SiC MOSFET circuit model is proposed in this paper. Firstly, the shortcomings of the traditional SiC MOSFET model are analyzed and improved based on the operation principles of the device. The mode of current diffusion is an important factor affecting the static characteristics of the SiC MOSFET. The current diffusion in the N- region are trapezoid due to the narrow N- drift region. Hence, the drift region resistance model is improved. The transient model of the SiC MOSFET describes the high-frequency application characteristics of the device. Then junction capacitance models of the SiC MOSFET are improved based on the abrupt junction, punch-through condition and negative-voltage turn-off characteristics. Finally, experiments are carried out on a CREE SiC MOSFET (1 200V/325A). Simulation and experiment are in a good agreement, which verifies the effectiveness and accuracy of the improved model.
|
Received: 21 March 2021
|
|
|
|
|
[1] 林弘毅, 伍梁, 郭潇, 等. 高功率密度SiC静止无功补偿器强迫风冷散热综合建模及优化设计方法[J]. 电工技术学报, 2021, 36(16): 3446-3456. Lin Hongyi, Wu Liang, Guo Xiao, et al.A com-prehensive model of forced air cooling and optimal design method of high power density SiC-static var generator[J]. Transactions of China Electrotechnical Society, 2021, 36(16): 3446-3456. [2] Wang Yijie, Lucia O, Zhang Zhe, et al.A review of high frequency power converters and related technologies[J]. IEEE Open Journal of the Industrial Electronics Society, 2020, 1: 247-260. [3] 盛况, 董泽政, 吴新科. 碳化硅功率器件封装关键技术综述及展望[J]. 中国电机工程学报, 2019, 39(19): 5576-5584, 5885. Sheng Kuang, Dong Zezheng, Wu Xinke.Review and prospect of key packaging technologies for silicon carbide power devices[J]. Proceedings of the CSEE, 2019, 39(19): 5576-5584, 5885. [4] 王征, 刘文, 梅云辉, 等. 宽禁带电力电子器件关键封装材料研究进展[J]. 电力电子技术, 2017, 51(8): 82-85. Wang Zheng, Liu Wen, Mei Yunhui, et al.Review on of key packaging materials for wide-band-gap power semiconductors[J]. Power Electronics Technology, 2017, 51(8): 82-85. [5] Alexakis P, Alatise O, Li Ran, et al.Modeling power converters using hard switched silicon carbide MOSFETs and Schottky barrier diodes[C]//European Conference on Power Electronics and Applications, Lille, France, 2013: 1-9. [6] Talesara V, Xing Diang, Fang Xiangxiang, et al.Dynamic switching of SiC power MOSFETs based on analytical subcircuit model[J]. IEEE Transactions on Power Electronics, 2020, 35(9): 9682-9691. [7] 周林, 李寒江, 解宝, 等. SiC MOSFET的Saber建模及其在光伏并网逆变器中的应用和分析[J]. 电工技术学报, 2019, 34(20): 4251-4263. Zhou Lin, Li Hanjiang, Xie Bao, et al.Saber modeling of SiC MOSFET and its application and analysis in photovoltaic grid-connected inverter[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4251-4263. [8] 李玉豪. SiC MOSFET神经网络模型及应用研究[D]. 天津: 天津工业大学, 2020. [9] Pushpakaran B N, Bayne S B, Ogunniyi A A.Electro-thermal transient simulation of silicon carbide power MOSFET[C]//IEEE Pulsed Power Conference (PPC), San Francisco, CA, USA, 2013: 1-6. [10] Fu Ruiyun, Grekov A, Hudgins J, et al.Power SiC DMOSFET model accounting for nonuniform current distribution in JFET region[J]. IEEE Transactions on Industry Applications, 2012, 48(1): 181-190. [11] Chindris G, Pop O, Alin G, et al.New PSPICE model for power MOSFET devices[C]//International Spring Seminar on Electronics Technology, Calimanesti-Caciulata, Romania, 2001: 158-162. [12] Kampitsis G, Antivachis M, Kokosis S, et al.An accurate Matlab/Simulink based SiC MOSFET model for power converter applications[C]//IEEE Applied Power Electronics Conference and Exposition, Charlotte, NC, USA, 2015: 1058-1064. [13] 庞一华. 大功率碳化硅模块的建模与特性研究[D]. 成都: 西南交通大学, 2019. [14] 朱义诚, 赵争鸣, 王旭东, 等. SiC MOSFET与SiC SBD换流单元瞬态模型[J]. 电工技术学报, 2017, 32(12): 58-69. Zhu Yicheng, Zhao Zhengming, Wang Xudong, et al.Analytical transient model of commutation units with SiC MOSFET and SiC SBD pair[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 58-69. [15] 盛况, 任娜, 徐弘毅. 碳化硅功率器件技术综述与展望[J]. 中国电机工程学报, 2020, 40(6): 1741-1752. Sheng Kuang, Ren Na, Xu Hongyi.A recent review on silicon carbide power devices technologies[J]. Proceedings of the CSEE, 2020, 40(6): 1741-1752. [16] 薄强, 王丽芳, 张玉旺, 等. 应用于无线充电系统的SiC MOSFET关断特性分析[J]. 电力系统自动化, 2021, 45(15): 150-157. Bo Qiang, Wang Lifang, Zhang Yuwang, et al.Analysis of turn-off characteristics of SiC MOSFET applied to wireless charging system[J]. Automation of Electric Power Systems, 2021, 45(15): 150-157. [17] Baliga B J.Fundamentals of power semiconductor devices[M]. New York, USA: Springer, 2008. [18] Lutz J.Semiconductor power devices: physics, characteristics, reliability[M]. Heidelberg, Germany: Springer, 2011. [19] Hasanuzzaman M.MOSFET modeling, simulation and parameter extraction in 4H-and 6H-silicon carbide[D]. Knoxville, USA: University of Tennessee, 2005. [20] 刘博, 刘伟志, 董侃, 等. 基于全碳化硅功率组件的变流器母排杂散电感解析计算方法[J]. 电工技术学报, 2021, 36(10): 2105-2114. Liu Bo, Liu Weizhi, Dong Kan, et al.Analytical calculation method for stray inductance of converter busbar based on full silicon carbide power module[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2105-2114. [21] McNutt T R, Hefner A R, Mantooth H A, et al. Silicon carbide power MOSFET model and parameter extraction sequence[J]. IEEE Transactions on Power Electronics, 2007, 22(2): 353-363. [22] 王莉娜, 马浩博, 袁恺, 等. SiC MOSFET半桥电路开关瞬态过电流、过电压建模与影响因素分析[J]. 电工技术学报, 2020, 35(17): 3652-3665. Wang Lina, Ma Haobo, Yuan Kai, et al.Modeling and influencing factor analysis of SiC MOSFET half-bridge circuit switching transient overcurrent and overvoltage[J]. Transactions of China Electro-technical Society, 2020, 35(17): 3652-3665. [23] 谢宗奎, 柯俊吉, 赵志斌, 等. 碳化硅MOSFET换流回路杂散电感提取方法的优化[J]. 电工技术学报, 2018, 33(21): 4919-4927. Xie Zongkui, Ke Junji, Zhao Zhibin, et al.Optimized extraction method of stray inductance in commutation path for silicon carbide MOSFET[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 4919-4927. |
|
|
|