|
|
Modeling of Magnetostrictive Characteristics in an Electrical Steel Sheet Based on the J-A Model and Its Experimental Verification |
Li Daiyan, Zhang Yanli, Jing Ying, Wang Zhen, Zhang Dianhai |
School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China |
|
|
Abstract The magnetostrictive phenomenon in the electrical steel is an important cause of vibration of the iron core in motors and transformers. Magnetostrictive characteristics are close related to magnetization patterns of iron cores. There is a large amount of rotating magnetic field in the stator core of electric machines, and compared with alternating magnetization, the rotating magnetization will cause greater magnetostrictive strain. Therefore, accurately modeling the magnetostrictive characteristics in an electrical steel sheet under rotating magnetization is the basis and premise for optimizing the performance of electrical equipment. In this paper, using the Jiles-Atherton (J-A) hysteresis model to characterize the hysteresis behavior caused by the movement of the magnetic domain wall and the rotation of the magnetic moment during the magnetization process, a magnetostrictive model that can describe the vector and hysteresis characteristics of magnetostrictive normal and shear strains under rotating magnetization is proposed. Based on the characteristic data in an electrical steel sheet provided by the rotating magnetic characteristic measurement system, the particle swarm optimization algorithm was used to identify model parameters, and the accuracy of the model was verified. A measurement system of local magnetostrictive properties in silicon laminated cores was set up, and the specific process of calculating the magnetostrictive deformation of the core was presented. By comparing with the measurement results, the validity of the model was further investigated. It is shown that the magnetostriction of electrical steel sheets under rotating magnetization has hysteresis behavior, and the proposed model can effectively predict this kind of characteristics.
|
Received: 03 September 2021
|
|
|
|
|
[1] Somkun S, Moses A J, Anderson P I.Effect of magnetostriction anisotropy in nonoriented electrical steels on deformation of induction motor stator cores[J]. IEEE Transactions on Magnetics, 2009, 45(10): 4744-4747. [2] Sablik M J, Jiles D C.Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis[J]. IEEE Transactions on Magnetics, 1993, 29(4): 2113-2123. [3] Rasilo P, Singh D, Belahcen A, et al.Iron losses, magnetoelasticity and magnetostriction in ferromagnetic steel laminations[J]. IEEE Transactions on Magnetics, 2013, 49(5): 2041-2044. [4] Belahcen A, Fonteyn K, Fortion S, et al.A coupled magnetoelastic model for ferromagnetic materials[J]. IEEE Transactions on Magnetics, 2008, 40(4): 1810-1819. [5] Fonteyn K, Belahcen A, Kouhia R, et al.FEM for directly coupled magneto-mechanical phenomena in electrical machines[J]. IEEE Transactions on Mag-netics, 2010, 46(8): 2923-2926. [6] Wang Zhen, Zhang Yanli, Ren Ziyan, et al.Modeling of anisotropic magnetostriction under DC bias based on an optimized BP neural network[J]. IEEE Transa-ctions on Magnetics, 2020, 56(3): 1-4. [7] Zhou Hang, Zhang Yanli, Zhang Dianhai, et al.An anisotropic magnetostriction model based on BP neural network combining Levenberg-Marquardt algorithm and particle swarm optimization[J]. International Journal of Applied Electromagnetics and Mechanics, 2017, 55: 193-201. [8] 祝丽花, 李晶晶, 朱建国. 服役条件下取向硅钢磁致伸缩模型的研究[J]. 电工技术学报, 2020, 35(19): 4131-4138. Zhu Lihua, Li Jingjing, Zhu Jianguo.Research on magnetostrictive model for oriented silicon steel under service conditions[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4131-4138. [9] 贲彤, 陈芳媛, 陈龙, 等. 考虑力-磁耦合效应的无取向电工钢片磁致伸缩模型的改进[J]. 中国电机工程学报, 2021, 41(15): 5361-5371. Ben Tong, Chen Fangyuan, Chen Long, et al.An improved magnetostrictive model of non-oriented electrical steel sheet considering force-magnetic coupling effect[J]. Proceedings of the CSEE, 2021, 41(15): 5361-5371. [10] 李强. 基于三轴应变片测量的电工钢片矢量磁致伸缩特性研究[D]. 沈阳: 沈阳工业大学, 2016. [11] Yamagashira M, Wakabayashi D, Enokizono M.Vector magnetic properties and 2-D magnetostriction of various electrical steel sheets under rotating flux condition[J]. IEEE Transactions on Magnetics, 2014, 50(4): 1-4. [12] Wakabayashi D, Enokizono M.Two-dimensional magnetostriction analysis using E&S-W model in induction motor model core[C]//International Con-ference on Electrical Machines (ICEM), Berlin, Germany, 2014: 1468-1474. [13] Somkun S, Moses A J, Anderson P I.Measurement and modeling of 2-D magnetostriction of nonoriented electrical steel[J]. IEEE Transactions on Magnetics, 2012, 48(2): 711-714. [14] Belahcen A.Vibrations of rotating electrical machines due to magnetomechanical coupling and magnetostriction[J]. IEEE Transactions on Magnetics, 2006, 42(4): 971-974. [15] 张黎, 王国政, 董攀婷, 等. 基于磁致伸缩本征特性的晶粒取向性变压器铁心振动模型[J]. 中国电机工程学报, 2016, 36(14): 3990-4001. Zhang Li, Wang Guozheng, Dong Panting, et al.Study on the vibration of grain-oriented transformer core based on the magnetostrictive intrinsic characte-ristics[J]. Proceedings of the CSEE, 2016, 36(14): 3990-4001. [16] 王佳音, 白保东, 刘宏亮, 等. 直流偏磁对变压器振动噪声的影响[J]. 电工技术学报, 2015, 30(8): 56-61. Wang Jiayin, Bai Baodong, Liu Hongliang, et al.Research on vibration and noise of transformers under DC bias[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 56-61. [17] Zhang Yanli, Wang Jiayin, Sun Xiaoguang, et al.Measurement and modeling of anisotropic mag-netostriction characteristic of grain-oriented silicon steel sheet under DC bias[J]. IEEE Transactions on Magnetics, 2014, 50(2): 361-364. [18] 祝丽花, 石永恒, 杨庆新. 夹紧力对非晶合金磁特性及铁芯振动的影响研究[J]. 中国电机工程学报, 2020, 40(24): 8155-8164, 8252. Zhu Lihua, Shi Yongheng, Yang Qingxin.Effect of clamping force on magnetic properties and core vibration of amorphous alloys[J]. Proceedings of the CSEE, 2020, 40(24): 8155-8164, 8252. [19] Zhao Xiaojun, Du Yutong, Liu Yang, et al.Mag-netostrictive properties of the grain-oriented silicon steel sheet under DC-biased and multisinusoidal magnetizations[J]. Materials (Basel, Switzerland), 2019, 12(13): 2156-2170. [20] 陈德志, 张玉庸, 白保东, 等. 不同温度及谐波下硅钢片电磁-力特性与变频电机振动[J]. 电工技术学报, 2020, 35(22): 4647-4656. Chen Dezhi, Zhang Yuyong, Bai Baodong, et al.Electromagnetic-force and vibration of silicon steel sheetand variable frequency motor under different temperature and harmonic[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4647-4656. [21] 张艳丽, 李强, 王洋洋, 等. 谐波磁场下硅钢片磁致伸缩特性分析[J]. 电工技术学报, 2015, 30(14): 545-550. Zhang Yanli, Li Qiang, Wang Yangyang, et al.Analysis on magnetostrictive properties of silicon steel sheet under harmonic magnetic field[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 545-550. [22] 迟青光, 张艳丽, 陈吉超, 等. 非晶合金铁心损耗与磁致伸缩特性测量与模拟[J]. 电工技术学报, 2021, 36(18): 3876-3883. Chi Qingguang, Zhang Yanli, Chen Jichao, et al.Measurement and modeling of lossand magneto-strictive properties for the amorphous alloy core[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3876-3883. [23] 杜杲娴, 杨鑫, 韦艳飞, 等. 稀土超磁致伸缩棒材特性测试平台优化与实验研究[J]. 电工技术学报, 2021, 36(18): 3867-3875. Du Gaoxian, Yang Xin, Wei Yanfei, et al.Optimi-zation and experimental research on the test platform of rare-earth gaint magnetostrictive rod characteri-stics[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3867-3875. [24] 赵志刚, 马习纹, 姬俊安, 等. 谐波激励条件下铁心动态Energetic建模与验证[J]. 电工技术学报, 2020, 35(20): 4241-4250. Zhao Zhigang, Ma Xiwen, Ji Junan, et al.Dynamic energetic modeling and verification of core under harmonic excitation[J]. Transactions of China Elec-trotechnical Society, 2020, 35(20): 4241-4250. [25] 王园弟, 张艳丽, 张殿海, 等. 旋转磁化下电工钢片磁致伸缩动态矢量特性模型[J]. 中国电机工程学报, 2018, 38(1): 292-299, 367. Wang Yuandi, Zhang Yanli, Zhang Dianhai, et al.Dynamic vector property model of magnetostriction in an electrical steel sheet under rotational mag-netization[J]. Proceedings of the CSEE, 2018, 38(1): 292-299, 367. [26] 戴道生. 物质磁性基础[M]. 北京: 北京大学出版社, 2016. [27] Baghel A P S, Kulkarni S V. Dynamic loss inclusion in the Jiles-Atherton (JA) hysteresis model using the original JA approach and the field separation approach[J]. IEEE Transactions on Magnetics, 2014, 50(2): 369-372. [28] Hussain S, Lowther D A.The modified Jiles-Atherton model for the accurate prediction of iron losses[J]. IEEE Transactions on Magnetics, 2017, 53(6): 7300504. [29] 张艳丽, 孙小光, 谢德馨, 等. 无取向硅钢片各向异性磁致伸缩特性模拟[J]. 中国电机工程学报, 2014, 34(27): 4731-4736. Zhang Yanli, Sun Xiaoguang, Xie Dexin, et al.Modeling of anisotropic magnetostriction property of non-oriented silicon steel sheet[J]. Proceedings of the CSEE, 2014, 34(27): 4731-4736. [30] Ito S, Mifune T, Matsuo T, et al.Energy-based mag-netization and magnetostriction modeling of grain-oriented silicon steel under vectorial excitations[J]. IEEE Transactions on Magnetics, 2016, 52(5): 2002604. [31] 王振, 张艳丽, 任亚军, 等. 铁心表面局部磁特性检测系统设计与实现[J]. 电工技术学报, 2018, 33(23): 5435-5441. Wang Zhen, Zhang Yanli, Ren Yajun, et al.Design and implementation of detection system of local magnetic property on the surface of iron core[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5435-5441. |
|
|
|