|
|
Flat-Top Pulsed High Magnetic Field Technology and Its Application |
Han Xiaotao1,2, Zhang Shaozhe1,2, Wei Wenqi1,2, Wang Junfeng1, Li Liang1,2 |
1. Wuhan National High Magnetic Field Center Huazhong University of Science and Technology Wuhan 430074 China; 2. State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract Flat-top pulsed magnetic field (FTPMF) is a kind of peculiar high magnetic fields where the peak field remains nearly unchanged within a finite duration time. Due to the advantages of its high field strength and high stability, it offers great opportunities to not only frontier fundamental science but also advanced technology. This paper summarizes recent progresses on generation of the FTPMF and high precision control of the flat-top parameters (stability and duration) by utilizing different power supplies such as flywheel energy storage pulse generator, capacitor bank and battery. We also introduce the key roles of FTPMF to improve the nuclear magnetic resonance (NMR) and physical property measurements. Several experimental results conducted at the Wuhan National High Magnetic Field Center are reported. These include the NMR measurement of 93Nb single crystal at 22T, specific heat of a spin dimer system Ba3Mn2O8 at 64T, as well as the nonlinear I-V characteristic measurement of the charge-density-wave compound Li0.9Mo6O17 in a field up to 30T. Finally, we discuss the cooperative power supply (miniaturization and modularization) and the material performance of the pulsed magnet. The application of FTPMF in pulsed field gyrotron terahertz source is also prospected.
|
Received: 22 July 2022
|
|
|
|
|
[1] Herlach F.Pulsed magnets[J]. Reports on Progress in Physics, 1999, 62(6): 859-920. [2] Battesti R, Beard J, Böser S, et al. High magnetic fields for fundamental physics[J]. Physics Reports, 2018, 765/766: 1-39. [3] Liu Jianhua, Wang Qiuliang, Qin Lang, et al. World record 32.35 Tesla direct-current magnetic field generated with an all-superconducting magnet[J]. Superconductor Science and Technology, 2020, 33(3): 03LT01. [4] Toth J, Bole S T.Design, construction, and first testing of a 41.5 T all-resistive magnet at the NHMFL in Tallahassee[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 1-4. [5] Hahn S, Kim K, Kim K, et al.45.5-Tesla direct-current magnetic field generated with a high-temperature superconducting magnet[J]. Nature, 2019, 570(7762): 496-499. [6] Jaime M, Daou R, Crooker S A, et al.Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2 (BO3)2[J]. Proceedings of the National Academy of Sciences, 2012, 109(31): 12404-12407. [7] Zherlitsyn S, Wustmann B, Herrmannsdörfer T, et al.Magnet-technology development at the Dresden high magnetic field laboratory[J].Journal of Low Temperature Physics, 2013, 170(5/6): 447-451. [8] Peng T, Liu S B, Pan Y, et al.A novel design of multi-coil pulsed magnet system for 100 T[J]. IEEE Transactions on Applied Superconductivity, 2022, 32(6): 1-4. [9] Han Xiaotao, Peng Tao, Ding Hongfa, et al.The pulsed high magnetic field facility and scientific research at Wuhan National High Magnetic Field Center[J]. Matter and Radiation at Extremes, 2017, 2(6): 278-286. [10] Kapitza P L.Further developments of the method of obtaining strong magnetic fields[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1927, 115(772): 658-683. [11] Roeland L W, Gersdorf R, Mattens W C M. The 40-T facility of the university of Amsterdam[J]. Physica B: Condensed Matter, 1989, 155(1/2/3): 58-60. [12] Miura N, Herlach F.Pulsed and ultrastrong magnetic fields[M]//Topics in Applied Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985: 247-350. [13] Campbell L J, Boenig H J, Rickel D G, et al.The NHMFL long-pulse magnet system-60-100 T[J]. Physica B: Condensed Matter, 1996, 216(3/4): 218-220. [14] Kohama Y, Kindo K.Generation of flat-top pulsed magnetic fields with feedback control approach[J]. The Review of Scientific Instruments, 2015, 86(10): 104701. [15] Imajo S, Dong Chao, Matsuo A, et al.High-resolution calorimetry in pulsed magnetic fields[J]. The Review of Scientific Instruments, 2021, 92(4): 043901. [16] Ding Hongfa, Yuan Yang, Xu Yun, et al.Testing and commissioning of a 135 MW pulsed power supply at the Wuhan national high magnetic field center[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 1-5. [17] Wang Shuang, Peng Tao, Jiang Fan, et al.Upgrade of the pulsed magnetic field system with flat-top at the WHMFC[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 1-4. [18] Li Dake, Ding Hongfa, Fang Yuchao, et al.Generation of a flat-top magnetic field with multiple-capacitor power supply[J]. IEEE Access, 10: 35550-35560. [19] Xiao Houxiu, Ma Yue, Lü Yiliang, et al.Development of a high-stability flat-top pulsed magnetic field facility[J]. IEEE Transactions on Power Electronics, 2014, 29(9): 4532-4537. [20] Zhang Shaozhe, Wang Zhenglei, Ding Tonghai, et al.Realization of high-stability flat-top pulsed magnetic fields by a bypass circuit of IGBTs in the active region[J]. IEEE Transactions on Power Electronics, 2020, 35(3): 2436-2444. [21] 彭涛, 李亮. 脉冲强磁场技术发展现状与趋势[J]. 物理, 2016, 45(1): 11-18. Peng Tao, Li Liang.The status and future development of pulsed high magnetic fields[J]. Physics, 2016, 45(1): 11-18. [22] 肖后秀, 李亮. 脉冲磁体的电感计算[J]. 电工技术学报, 2010, 25(1): 14-18. Xiao Houxiu, Li Liang.Inductance calculation for pulsed magnets[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 14-18. [23] Xu Yun, Pi Hongwen, Ren Tieqiang, et al.Design of a multipulse high-magnetic-field system based on flywheel energy storage[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-5. [24] Weickert F, Meier B, Zherlitsyn S, et al.Implementation of specific-heat and NMR experiments in the 1500 ms long-pulse magnet at the Hochfeld-Magnetlabor Dresden[J]. Measurement Science and Technology, 2012, 23(10): 105001. [25] Dworschak G, Haberey F, Hildebrand P, et al.Production of pulsed magnetic fields with a flat pulse top of 440 koe and 1 msec duration[J]. Review of Scientific Instruments, 1974, 45(2): 243-249. [26] Peng E, Ling Wenbin, Mao A, et al.A pulsed power supply based on an optimized SFPFN scheme producing large currents with a flat top on a heavily inductive load[J]. IEEE Transactions on Power Electronics, 2021, 36(10): 11221-11233. [27] Jiang Fan, Peng Tao, Xiao Houxiu, et al.Design and test of a flat-top magnetic field system driven by capacitor banks[J]. Review of Scientific Instruments, 2014, 85(4): 045106. [28] Qiu Wenjie, Xie Jianfeng, Liu Qinying, et al.A low-jitter timing generator based on completely on-chip self-measurement and calibration in a field programmable gate array[J]. The Review of Scientific Instruments, 2021, 92(11): 114703. [29] Xie J F, Xiong Y D, Han X T, et al.Design and realization of the control and measurement system of the long pulsed high magnetic field facility supplied by battery[J]. Journal of Low Temperature Physics, 2013, 170(5/6): 569-575. [30] (美)贾扬·巴利加. IGBT器件: 物理、设计与应用[M].韩雁, 丁扣宝, 张世峰, 等译. 北京: 机械工业出版社, 2018. [31] 万昊, 张绍哲, 刘沁莹, 等. 平顶脉冲磁场连续微调控系统设计[J]. 强激光与粒子束, 2022, 34(7): 106-111. Wan Hao, Zhang Shaozhe, Liu Qinying, et al.Design of continuous micro-control system for flat-top pulsed magnetic field[J]. High Power Laser and Particle Beams, 2022, 34(7): 106-111. [32] Wang Zhenglei, Sun Xianfeng, Zhang Jingwen, et al.Flat-top magnetic field facility for pulse terahertz gyrotrons[C]//2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Chengdu, China, 2021: 1-2. [33] 周俊. 高稳定度平顶脉冲强磁场有源调控方法研究与实现[D]. 武汉: 华中科技大学, 2016. [34] Meier B, Kohlrautz J, Haase J, et al.Nuclear magnetic resonance apparatus for pulsed high magnetic fields[J]. Review of Scientific Instruments, 2012, 83(8): 083113. [35] Kohlrautz J, Reichardt S, Green E L, et al.NMR shift and relaxation measurements in pulsed high-field magnets up to 58 T[J]. Journal of Magnetic Resonance, 2016, 263: 1-6. [36] Meier B, Greiser S, Haase J, et al.NMR signal averaging in 62 T pulsed fields[J]. Journal of Magnetic Resonance, 2011, 210(1): 1-6. [37] Tokunaga Y, Orlova A, Bruyant N, et al.High-field phase diagram of the heavy-fermion metal CeIn3: pulsed-field NMR study on single crystals up to 56 T[J]. Physical Review B, 2019, 99(8): 085142. [38] Stork H, Bontemps P, Rikken G L J A. NMR in pulsed high-field magnets and application to high-TC superconductors[J]. Journal of Magnetic Resonance, 2013, 234: 30-34. [39] Kohlrautz J, Haase J, Green E L, et al.Field-stepped broadband NMR in pulsed magnets and application to SrCu2(BO3)2 at 54T[J]. Journal of Magnetic Resonance (San Diego, Calif: 1997), 2016, 271: 52-59. [40] Liu Qinying, Liu Shiyu, Luo Yongkang, et al.Pulsed-field nuclear magnetic resonance: status and prospects[J]. Matter and Radiation at Extremes, 2021, 6(2): 024201. [41] Ihara Y, Hayashi K, Kanda T, et al.Nuclear magnetic resonance measurements in dynamically controlled field pulse[J]. The Review of Scientific Instruments, 2021, 92(11): 114709. [42] 刘沁莹. 平顶脉冲强磁场核磁共振技术研究[D]. 武汉: 华中科技大学, 2022. [43] 陈晔. 极端条件下的电阻和比热测量及其在强关联电子材料中的应用[D]. 杭州: 浙江大学, 2015. [44] Jaime M, Movshovich R, Stewart G R, et al.Closing the spin gap in the Kondo insulator Ce3Bi4Pt3 at high magnetic fields[J]. Nature, 2000, 405(6783): 160-163. [45] Jaime M, Kim K, Jorge G, et al.High magnetic field studies of the hidden order transition in URu2Si2[J]. Physical Review Letters, 2002, 89(28): 287201. [46] Jaime M, Movshovich R, Stewart G R, et al. Specific heat of Ce3Bi4Pt3 at 60 T[J]. Physica B: Condensed Matter, 2001, 294/295: 240-244. [47] 张绍哲. 蓄电池供电的高稳定度平顶脉冲磁场关键技术研究[D]. 武汉: 华中科技大学, 2020. [48] Wei Wenqi, Yang Ming, Jin Shimin, et al.The Current-voltage measurements under flat-top pulsed magnetic fields for non-ohmic transport study[J]. Review of Scientific Instruments, 2022, 93(8): 085102. [49] Matsui K, Kanda T, Ihara Y, et al.Compact megajoule-class pulsed power supply for generating long-pulsed magnetic fields[J]. Review of Scientific Instruments, 2021, 92(2): 024711. [50] 宋清超, 陈家伟, 蔡坤城, 等. 多电飞机用燃料电池-蓄电池-超级电容混合供电系统的高可靠动态功率分配技术[J]. 电工技术学报, 2022, 37(2): 445-458. Song Qingchao, Chen Jiawei, Cai Kuncheng, et al.A highly reliable power allocation technology for the fuel cell-battery-supercapacitor hybrid power supply system of a more electric aircraft[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 445-458. [51] Penovi E, Retegui R G, Maestri S, et al.Multistructure power converter with H-bridge series regulator suitable for high-current high-precision-pulsed current source[J]. IEEE Transactions on Power Electronics, 2015, 30(12): 6534-6542. [52] Gao Zhaoshun, Zuo Tingting, Wang Meng, et al.In-situ graphene enhanced copper wire: a novel electrical material with simultaneously high electrical conductivity and high strength[J]. Carbon, 2022, 186: 303-312. [53] Peng Tao, Deng Le, Wang S, et al.Development and performance of 65 T fast-cooling user magnet with long service life[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 1-4. [54] Sabchevski S, Glyavin M, Mitsudo S, et al.Novel and emerging applications of the gyrotrons worldwide: current status and prospects[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42(7): 715-741. [55] Glyavin M Y, Denisov G G.The progress in high frequency, high power gyrotron development in Russia[C]//Proc SPIE 11582, Fourth International Conference on Terahertz and Microwave Radiation: Generation, Detection, and Applications, Tomsk, Russia, 2020, 11582: 217-221. [56] Glyavin M Y, Luchinin A G, Nusinovich G S, et al.A 670?GHz gyrotron with record power and efficiency[J]. Applied Physics Letters, 2012, 101(15): 153503. [57] Idehara T, Saito T, Mori H, et al.Long pulse operation of the THz gyrotron with a pulse magnet[J]. International Journal of Infrared and Millimeter Waves, 2008, 29(2): 131-141. [58] Fu Wenjie, Yan Yang, Li Xiaoyun, et al.The experiment of a 220 GHz gyrotron with a pulse magnet[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31(4): 404-410. [59] Qi Xiangbo, Du Chaohai, Pan Shi, et al.Terahertz broadband-tunable minigyrotron with a pulse magnet[J]. IEEE Transactions on Electron Devices, 2017, 64(2): 527-535. [60] Xiao Houxiu, Huang Yu, Han Xiaotao, et al.Development and initial experimental results of a terahertz pulsed field gyrotron in the WHMFC[J]. IEEE Transactions on Electron Devices, 2022, 69(9): 5242-5247. [61] Nusinovich G S.Remote detection of concealed radioactive materials by using focused powerful terahertz radiation[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37(6): 515-535. [62] Glyavin M Y, Luchinin A G, Bogdashov A A, et al.Experimental study of the pulsed terahertz gyrotron with record-breaking power and efficiency parameters[J]. Radiophysics and Quantum Electronics, 2014, 56(8/9): 497-507. [63] Fokin A, Glyavin M, Golubiatnikov G, et al.High-power sub-terahertz source with a record frequency stability at up to 1 Hz[J]. Scientific Reports, 2018, 8(1): 4317. [64] Flyagin V A, Luchinin A G, Nusinovich G S.Submillimeter-wave gyrotrons: theory and experiment[J]. International Journal of Infrared and Millimeter Waves, 1983, 4(4): 629-637. |
|
|
|