|
|
Multi-Time-Scale Model Predictive Control of Inverter Air Conditioner Cluster for Distributed Power Fluctuation Stabilization |
Yang Weichen, Miao Shihong, Liu Zhiwei, Tu Qingyu, Lin Yujun |
State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract To exert the potential of inverter air conditioner (IAC) cluster in stabilizing the fluctuation of distributed generation, this paper proposes a multi-time scale model predictive control strategy for IAC cluster. First, an equivalent generation model based on temperature command regulation and an equivalent energy storage model based on direct power control are constructed to realize 15-minute and 1-minute level control of IAC clusters, respectively. In terms of temperature command regulation, the dynamic process of the IAC responding to the target temperature is considered, and the centralized control architecture is used to obtain the optimal temperature command. In addition, the orderly action strategy of IAC is further studied to alleviate the power shock caused by the simultaneous action of large-scale IACs. In terms of direct power control, the state difference between IACs is considered, the power optimization and fast response of the IAC cluster are realized by means of centralized optimization and autonomous response. Finally, the simulation verified that the power fluctuation of the distributed power generation can be effectively suppressed by the proposed multi-time scale coordination control strategy of the IAC cluster.
|
Received: 10 February 2022
|
|
|
|
|
[1] 余光正, 林涛, 汤波, 等. 计及谐波裕度-均衡度的分布式电源最大准入功率计算方法[J]. 电工技术学报, 2021, 36(9): 1857-1865, 1875. Yu Guangzheng, Lin Tao, Tang Bo, et al.Calculation method of distributed generator maximum access power considering balance degree of harmonic margin[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1857-1865, 1875. [2] 金国彬, 潘狄, 陈庆, 等. 考虑源荷不确定性的直流配电网模糊随机日前优化调度[J]. 电工技术学报, 2021, 36(21): 4517-4528. Jin Guobin, Pan Di, Chen Qing, et al.Fuzzy random day-ahead optimal dispatch of DC distribution network considering the uncertainty of source-load[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4517-4528. [3] 郑重, 苗世洪, 李超, 等. 面向微型能源互联网接入的交直流配电网协同优化调度策略[J]. 电工技术学报, 2022, 37(1): 192-207. Zheng Zhong, Miao Shihong, Li Chao, et al.Coordinated optimal dispatching strategy of AC/DC distribution network for the integration of micro energy internet[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 192-207. [4] 叶畅, 曹侃, 丁凯, 等. 基于广义储能的多能源系统不确定优化调度策略[J]. 电工技术学报, 2021, 36(17): 3753-3764. Ye Chang, Cao Kan, Ding Kai, et al.Uncertain optimal dispatch strategy based on generalized energy storage for multi-energy system[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3753-3764. [5] 王永权, 张沛超, 姚垚. 聚合大规模空调负荷的信息物理建模与控制方法[J]. 中国电机工程学报, 2019, 39(22): 6509-6521. Wang Yongquan, Zhang Peichao, Yao Yao.Cyber-physical modeling and control method for aggregating large-scale ACLs[J]. Proceedings of the CSEE, 2019, 39(22): 6509-6521. [6] 范睿, 孙润稼, 刘玉田. 考虑空调负荷需求响应的负荷恢复量削减方法[J]. 电工技术学报, 2022, 37(11): 2869-2877. Fan Rui, Sun Runjia, Liu Yutian.A load restoration amount reduction method considering demand response of air conditioning loads[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2869-2877. [7] 孙毅, 黄绍模, 李泽坤, 等. 考虑时域特性的异构温控负荷联合调控策略[J]. 电网技术, 2020, 44(12): 4722-4734. Sun Yi, Huang Shaomo, Li Zekun, et al.Joint control strategy of heterogeneous temperature control load considering time domain characteristics[J]. Power System Technology, 2020, 44(12): 4722-4734. [8] 潘磊, 凌呼君. 可控负荷参与电力系统调频的应用研究[J]. 电气技术, 2017, 18(2): 89-92. Pan Lei, Ling Hujun.Research on active response frequency modulation for controllable load[J]. Electrical Engineering, 2017, 18(2): 89-92. [9] 徐青山, 王栋, 戴蔚莺, 等. 变频空调负荷虚拟同步机化改造及其参与微网互动调控[J]. 电力自动化设备, 2020, 40(3): 8-14. Xu Qingshan, Wang Dong, Dai Weiying, et al.Virtual synchronous machine transformation of inverter air conditioning load and its participation in microgrid interactive control[J]. Electric Power Automation Equipment, 2020, 40(3): 8-14. [10] 产业网. 2021年冷年空调行业发展现状分析:线上销售额增长,原材料价格对成本价格影响明显[EB/OL]. https://www.chyxx.com/industry/202110/980819.html. [11] 姚垚, 张沛超. 基于市场控制的空调负荷参与平抑微网联络线功率波动的方法[J]. 中国电机工程学报, 2018, 38(3): 782-791. Yao Yao, Zhang Peichao.A market-based control method for air conditioner loads to smooth microgrid tie-line power fluctuation[J]. Proceedings of the CSEE, 2018, 38(3): 782-791. [12] 李滨, 黎智能, 陈碧云. 电力市场中配电网的空调群调控策略[J]. 电力系统自动化, 2019, 43(15): 124-131. Li Bin, Li Zhineng, Chen Biyun.Air conditioning group dispatch control strategy of distribution network in electricity market[J]. Automation of Electric Power Systems, 2019, 43(15): 124-131. [13] 刘志伟, 苗世洪, 杨炜晨, 等. 计及电气特性的空调负荷建模及集群控制策略[J]. 电力自动化设备, 2022, 42(1): 178-184, 192. Liu Zhiwei, Miao Shihong, Yang Weichen, et al.Air conditioning load modeling and cluster control strategy considering electrical characteristic[J]. Electric Power Automation Equipment, 2022, 42(1): 178-184, 192. [14] Jiang Tingyu, Ju Ping, Wang Chong, et al.Coordinated control of air-conditioning loads for system frequency regulation[J]. IEEE Transactions on Smart Grid, 2021, 12(1): 548-560. [15] 姚垚, 张沛超. 大规模变频空调参与电力系统辅助服务的协调控制方法[J]. 电力系统自动化, 2018, 42(22): 127-134. Yao Yao, Zhang Peichao.Coordinated control method for ancillary services of power system with participation of large-scale inverter air-conditioner[J]. Automation of Electric Power Systems, 2018, 42(22): 127-134. [16] 姜婷玉, 李亚平, 江叶峰, 等. 温控负荷提供电力系统辅助服务的关键技术综述[J]. 电力系统自动化, 2022, 46(11): 191-207. Jiang Tingyu, Li Yaping, Jiang Yefeng, et al.Review on providing auxiliary service to power system with thermostatically controlled loads[J]. Automation of Electric Power Systems, 2022, 46(11): 191-207. [17] Luo Fengji, Zhao Junhua, Dong Zhaoyang, et al.Optimal dispatch of air conditioner loads in Southern China region by direct load control[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 439-450. [18] Liu Mingxi, Shi Yang.Model predictive control of aggregated heterogeneous second-order thermostatically controlled loads for ancillary services[J]. IEEE Transactions on Power Systems, 2016, 31(3): 1963-1971. [19] 余洋, 权丽, 贾雨龙, 等. 平抑新能源功率波动的聚合温控负荷改进模型预测控制[J]. 电力自动化设备, 2021, 41(3): 92-99. Yu Yang, Quan Li, Jia Yulong, et al.Improved model predictive control of aggregated thermostatically controlled load for power fluctuation suppression of new energy[J]. Electric Power Automation Equipment, 2021, 41(3): 92-99. [20] Mahdavi N, Braslavsky J H.Modelling and control of ensembles of variable-speed air conditioning loads for demand response[J]. IEEE Transactions on Smart Grid, 2020, 11(5): 4249-4260. [21] Song Meng, Gao Ciwei, Yang Jianlin, et al.Energy storage modeling of inverter air conditioning for output optimizing of wind generation in the electricity market[J]. CSEE Journal of Power and Energy Systems, 2018, 4(3): 305-315. [22] Song Meng, Sun Wei, Shahidehpour M, et al.Multi-time scale coordinated control and scheduling of inverter-based TCLs with variable wind generation[J]. IEEE Transactions on Sustainable Energy, 2021, 12(1): 46-57. [23] 康忠健, 李锴绩, 常铮. 基于扩张状态观测器的非线性最优变频空调频率控制[J]. 电力系统保护与控制, 2020, 48(13): 91-98. Kang Zhongjian, Li Kaiji, Chang Zheng.Frequency control of inverter air conditioning based on ESO nonlinear optimal control[J]. Power System Protection and Control, 2020, 48(13): 91-98. [24] 吴俊鸿, 梁青, 连彩云, 等. 基于专家PID的变频空调频率调节方法研究[J]. 制冷与空调, 2020, 20(8): 12-15. Wu Junhong, Liang Qing, Lian Caiyun, et al.Study on frequency adjustment of inverter air-conditioner based on expert-PID control[J]. Refrigeration and Air-Conditioning, 2020, 20(8): 12-15. [25] 国家电网公司. 光伏电站接入电网技术规定: Q/GDW 617—2015[S]. 北京: 中国电力出版社, 2016. |
|
|
|