|
|
Design of New Transcranial Magnetic Stimulation Capacitor Charging Power Supply Based on LCCL Resonant Converter Topology |
Xiong Hui1, Qin Taotao1, Liu Jinzhen2 |
1. Key Laboratory of Intelligent Control of Electrical Equipment Tiangong University Tianjin 300387 China; 2. School of Control Science and Engineering Tiangong University Tianjin 300387 China |
|
|
Abstract To increase the frequency of transcranial magnetic stimulation (TMS) electrical current pulses, a kind of capacitor charging power supply (CCPS) based on inductor-capacitor-capacitor- inductor resonant converter (LCCL RC) is proposed in this paper. Firstly, the approximate expressions of the LCCL RC constant current output and the zero-phase condition of the inverter output voltage and current are derived by first harmonic approximation. Secondly, the design conditions of the converter with smaller physical size resonant network size and larger current gain are analyzed. According to the simulation, the pulse frequency of TMS system using LCCL RC as charging power supply is 1.21 times that of LCLC RC. Finally, a prototype with an average output current of 1.15A and a power of 118.37W is designed. It is shown that the actual current gain of the prototype is 0.904, and the time to charge the 3 300μF storage capacitor from 0V to 100V is 315ms. Compared with the LCLC RC capacitor charging power supply, the charging time is reduced by 21.25%. The experimental results verify the theoretical analysis.
|
Received: 25 October 2021
|
|
|
|
|
[1] 张帅, 高昕宇, 周振宇, 等. 基于GrC模型的经颅磁声电刺激对神经元放电活动的影响[J]. 电工技术学报, 2019, 34(17): 3572-3580. Zhang Shuai, Gao Xinyu, Zhou Zhenyu, et al.Effect of transcranial magnetic-acoustic electrical stimulation on neuronal discharge activity based on GrC model[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3572-3580. [2] Li Jiangtao, Cao Hui, Zhao Zheng, et al.A study on the multichannel TMS device[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-5. [3] Chen Yimei, Gao Guohui, Xiong Hui, et al.A multi- channel parameters adjustable magnetic field gener- ator[J]. The Review of Scientific Instruments, 2020, 91(2): 024709. [4] Yu Xiao, Xi Weibin, Liu Zhimin, et al.Design of a 150T pulsed magnetic field generator device[J]. Fusion Engineering and Design, 2017, 121(10): 265-271. [5] 余波, 梁锐, 蒲亦非, 等. 超级电容器恒流充电的时域分数阶电路模型[J]. 电工技术学报, 2019, 34(17): 3533-3541. Yu Bo, Liang Rui, Pu Yifei, et al.Time-domain fractional circuit model for constant current charging of supercapacitor[J]. Transactions of China Electro- technical Society, 2019, 34(17): 3533-3541. [6] 王野, 姜万东, 叶佳虹, 等. 一种新型超级电容模组充电电源设计[J]. 电气技术, 2017, 18(5): 109-112, 116. Wang Ye, Jiang Wandong, Ye Jiahong, et al.Design a new super capacitor module for charging power[J]. Electrical Engineering, 2017, 18(5): 109-112, 116. [7] Bouda N R, Pritchard J, Weber R J, et al. Methods of high current magnetic field generator for transcranial magnetic stimulation application[J]. Journal of Applied Physics, 2015, 117(17): 17B319. [8] Peterchev A V, Murphy D L, Lisanby S H.Repetitive transcranial magnetic stimulator with controllable pulse parameters[J]. Journal of Neural Engineering, 2011, 8(3): 036016. [9] 杨玉岗, 赵金升. 高增益对称双向LCLC谐振变换器的研究[J]. 电工技术学报, 2020, 35(14): 3007-3017. Yang Yugang, Zhao Jinsheng.Research on high-gain symmetric bidirectional LCLC resonant converter[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3007-3017. [10] 孙加祥, 吴红飞, 汤欣喜, 等. 基于整流侧辅助调控的交错并联LLC谐振变换器[J]. 电工技术学报, 2021, 36(10): 2072-2080. Sun Jiaxiang, Wu Hongfei, Tang Xinxi, et al.Inter- leaved LLC resonant converter with auxiliary regu- lation of rectifier[J]. Transactions of China Electro- technical Society, 2021, 36(10): 2072-2080. [11] 杨博, 葛琼璇, 赵鲁, 等. 基于输入串联输出并联的双向全桥串联谐振DC-DC变换器系统控制策略研究[J]. 电工技术学报, 2020, 35(12): 2574-2584. Yang Bo, Ge Qiongxuan, Zhao Lu, et al.Control strategy of dual bridge series resonant DC-DC converter system based on input series output parallel connection[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2574-2584. [12] 梁勖, 赵读亮, 林颖, 等. 基于可控LC串联谐振的高重频高精度脉冲充电电源[J]. 高电压技术, 2018, 44(9): 3022-3027. Liang Xu, Zhao Duliang, Lin Ying, et al.High repetition rate and high accuracy capacitor charging pulse power supply based on controllable LC series resonance[J]. High Voltage Engineering, 2018, 44(9): 3022-3027. [13] 杨博, 葛琼璇, 赵鲁, 等. 双向全桥串联谐振DC/DC变换器回流功率特性优化[J]. 中国电机工程学报, 2019, 39(23): 6990-6999, 7112. Yang Bo, Ge Qiongxuan, Zhao Lu, et al.The back-flow power optimization of dual bridge series resonant DC/DC converter[J]. Proceedings of the CSEE, 2019, 39(23): 6990-6999, 7112. [14] 朴政国, 户永杰, 郭裕祺. 一种基于并联谐振的高频隔离型并网逆变器[J]. 电工技术学报, 2018, 33(2): 322-330. Piao Zhengguo, Hu Yongjie, Guo Yuqi.High- frequency isolated grid-connected inverter based on parallel resonance[J]. Transactions of China Electro- technical Society, 2018, 33(2): 322-330. [15] 袁臣虎, 杜永恒, 刘晓明, 等. LCC谐振式永磁机构储能电容恒流充电控制[J]. 电工技术学报, 2020, 35(增刊2): 432-439. Yuan Chenhu, Du Yongheng, Liu Xiaoming, et al.Constant current charging control of LCC resonant permanent magnet mechanism energy storage capacitor[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 432-439. [16] Jafari H, Habibi M.High-voltage charging power supply based on an LCC-type resonant converter operating at continuous conduction mode[J]. IEEE Transactions on Power Electronics, 2020, 35(5): 5461-5478. [17] 伍梁, 孙晓玮, 赵钧, 等. 基于大信号模型的多模块LCC级联变换器输出电压不均衡分析法[J]. 电工技术学报, 2020, 35(24): 5142-5151. Wu Liang, Sun Xiaowei, Zhao Jun, et al.Analysis of output voltage imbalance for cascaded multi-module LCC converters based on large-signal model[J]. Transactions of China Electrotechnical Society, 2020, 35(24): 5142-5151. [18] Khoshsaadat A, Moghani J S.Fifth-order T-type passive resonant tanks tailored for constant current resonant converters[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 65(2): 842-853. [19] 罗全明, 邹灿, 支树播, 等. 基于LCL-T半桥谐振变换器的LED恒流驱动电源[J]. 电工技术学报, 2013, 28(12): 319-324. Luo Quanming, Zou Can, Zhi Shubo, et al.Constant current LED driver based on LCL-T half bridge resonant converter[J]. Transactions of China Elec- trotechnical Society, 2013, 28(12): 319-324. [20] 罗全明, 邹灿, 支树播, 等. 二极管钳位型LCL-T半桥谐振恒流LED驱动电源[J]. 电机与控制学报, 2013, 17(6): 8-14. Luo Quanming, Zou Can, Zhi Shubo, et al.Constant current LED driver based on LCL-T half bridge reso-nant converter with clamping diode[J]. Electric Machines and Control, 2013, 17(6): 8-14. [21] Xiong Hui, Wang Yuling, Liu Jinzhen, et al.Deve- lopment of compact rapid capacitor charging power supply for TMS[J]. IET Power Electronics, 2020, 13(12): 2651-2657. [22] Khoshsaadat A, Khoshooei A, Mohammadi M.Analysis and design of a new current-source output load resonant converter with high capability in line and load regulation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(8): 2849-2858. [23] 方旌扬, 肖国春, 郑力夫, 等. 一种LCCL滤波器及其在半桥电力有源滤波器中的应用[J]. 电工技术学报, 2016, 31(22): 125-136. Fang Jingyang, Xiao Guochun, Zheng Lifu, et al.An LCCL filter for a half-bridge active power filter[J]. Transactions of China Electrotechnical Society, 2016, 31(22): 125-136. [24] Iglesias A H.Transcranial magnetic stimulation as treatment in multiple neurologic conditions[J]. Current Neurology and Neuroscience Reports, 2020, 20(1): 1. [25] 于阳, 李玥, 张广浩, 等. 适用于临床及动物试验的高频重复经颅磁刺激系统设计及其应用[J]. 高电压技术, 2013, 39(1): 181-187. Yu Yang, Li Yue, Zhang Guanghao, et al.Design and application of high frequency repetitive transcranial magnetic stimulation system for clinical and animal tests[J]. High Voltage Engineering, 2013, 39(1): 181-187. [26] 左金鑫. 经颅磁刺激仪电源系统的研究与优化设计[D]. 武汉: 华中科技大学, 2018. [27] 熊慧, 王玉领, 付浩, 等. 一种应用于经颅磁刺激脉冲宽度可调的节能型激励源[J]. 电工技术学报, 2020, 35(4): 679-686. Xiong Hui, Wang Yuling, Fu Hao, et al.An energy efficient excitation source for transcranial magnetic stimulation with controllable pulse width[J]. Transa- ctions of China Electrotechnical Society, 2020, 35(4): 679-686. [28] 郭苗苗, 王中豪, 张天恒, 等. 经颅磁刺激模式差异性对大鼠工作记忆神经网络关联特性的影响研究[J]. 电工技术学报, 2021, 36(18): 3809-3820. Guo Miaomiao, Wang Zhonghao, Zhang Tianheng, et al.Effect of different patterns of transcranial magnetic stimulation on the correlation of neural network during working memory task of rats[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3809-3820. [29] Pollock H.Constant frequency, constant current load- resonant capacitor charging power supply[J]. IET Electric Power Applications, 1999, 146(2): 187-192. |
|
|
|