|
|
An Adaptive Load-Based Location Method of Stator Ground Fault for Large Hydro-Generators |
Tan Liming1,2, Yin Xianggen1,2, Wang Yikai1,2, Qiao Jian1,2, Xu Wen1,2 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 China; 2. Hubei Electric Power Security and High Efficiency Key Laboratory Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract Stator ground fault is the most common fault in large hydro-generators, and effective ground fault location methods can shorten the troubleshooting time and improve the reliability of the power supply. Existing location methods ignore the influence of armature reaction on the winding voltage distribution under load condition. Based on the in-depth study of the armature reaction mechanism, it is concluded that the voltage distribution of the stator winding under different load conditions is the same as the electrical potential distribution under no-load condition. On that basis, an adaptive load-based location method of stator ground fault for large hydro-generators is proposed in this paper. The fault evaluation function is constructed according to the amplitude and phase relationship between the neutral voltage and the fault winding voltage when a ground fault occurs under no-load condition. Then the fault winding voltage distribution under the real-time load condition is determined and the fault evaluation function is adjusted according to the actual measured value of terminal voltage. Virtual fault points are set on the fault winding and the fault evaluation function value is calculated for each point, and the point corresponding to its minimal value is defined as the fault location result. A quasi-distributed parameter model of the hydro generator is built in PSCAD/EMTDC for simulation verification. Simulation results show that the proposed method can effectively determine the fault location under different fault scenes and load conditions, which provides a reference for fault maintenance.
|
Received: 29 July 2021
|
|
|
|
|
[1] 桂林, 陈俊, 王凯, 等. 基于柔性光学TA的发电电动机主保护优化设计[J]. 电力系统自动化, 2020, 44(18): 132-138. Gui Lin, Chen Jun, Wang Kai, et al.Optimal design of main protection for generator-motor based on flexible optical current transformer[J]. Automation of Electric Power Systems, 2020, 44(18): 132-138. [2] 田代宗, 孙宇光, 王善铭, 等. 多相整流永磁同步发电机绕组内部相间短路的故障分析[J]. 电工技术学报, 2020, 35(6): 1262-1271. Tian Daizong, Sun Yuguang, Wang Shanming, et al.Analysis of stator internal phase-to-phase short-circuit in the multiphase permanent magnet synchronous generator with rectifier load system[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1262-1271. [3] 何玉灵, 张文, 张钰阳, 等. 发电机定子匝间短路对绕组电磁力的影响[J]. 电工技术学报, 2020, 35(13): 2879-2888. He Yuling, Zhang Wen, Zhang Yuyang, et al.Effect of stator inter-turn short circuit on winding electromagnetic forces in generators[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2879-2888. [4] 郝亮亮, 李佳慧, 段贤稳, 等. 核电多相环形无刷励磁机转子绕组短路故障特征分析[J]. 电工技术学报, 2020, 35(6): 1251-1261. Hao Liangliang, Li Jiahui, Duan Xianwen, et al.Characteristic analysis of short-circuit fault in rotor winding of nuclear power multi-phase annular brushless exciter[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1251-1261. [5] 李玉平, 桑建斌, 朱宇聪, 等. 基于双端直流注入切换采样原理的发电机转子接地保护[J]. 电力系统自动化, 2020, 44(21): 139-144. Li Yuping, Sang Jianbin, Zhu Yucong, et al.Earth fault protection for generator rotor based on switching sampling principle with double-end DC injection[J]. Automation of Electric Power Systems, 2020, 44(21): 139-144. [6] Yu Yang, Cong Leyan, Xia Tian, et al.A stator current vector orientation based multi-objective integrative suppressions of flexible load vibration and torque ripple for PMSM considering electrical loss[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(3): 161-171. [7] 罗仕华, 胡维昊, 黄琦, 等. 市场机制下光伏/小水电/抽水蓄能电站系统容量优化配置[J]. 电工技术学报, 2020, 35(13): 2792-2804. Luo Shihua, Hu Weihao, Huang Qi, et al.Optimization of photovoltaic small hydropower pumped storage power station system sizing under the market mechanism[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2792-2804. [8] Alex Y W.MV generator ground fault arcing power damage assessment[J]. IEEE Transactions on Industry Applications, 2018, 54(1): 912-915. [9] Bi Daqiang, Wang Xiangheng, Wang Weijian, et al.Improved transient simulation of salient-pole synchronous generators with internal and ground faults in the stator winding[J]. IEEE Transactions on Energy Conversion 2005, 20(1): 128-34. [10] 高俊国, 孟睿潇, 胡海涛, 等. 电机定子绝缘老化寿命预测研究进展[J]. 电工技术学报, 2020, 35(14): 3065-3074. Gao Junguo, Meng Ruixiao, Hu Haitao, et al.Research progress on prediction of aging life of motor stator insulation[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3065-3074. [11] Tai Nengling.Protection technique based on Delta-zero sequence voltages for generator stator ground fault[J]. IEEE Proceedings-Generation, Transmission and Distribution, 2004, 151(5): 651-7. [12] Yin Xianggen, Malik O P, Hope G S, et al.Adaptive ground fault protection schemes for turbogenerator based on third harmonic voltages[J]. IEEE Transactions on Power Delivery, 1990, 5(2): 595-603. [13] 康逸群, 宋梦琼. 大型发电机注入式定子接地保护应用与分析[J]. 电气技术, 2020, 21(1): 129-132. Kang Yiqun, Song Mengqiong.Application and analysis of voltage-injection stator ground protection for large-sized generator[J]. Electrical Engineering, 2020, 21(1): 129-132. [14] Safari-Shad N, Franklin R, Negahdari A, et al.Adaptive 100% injection-based generator stator ground fault protection with real-time fault location capability[J]. IEEE Transactions on Power Delivery, 2018, 33(5): 2364-72. [15] Megahed A I, Malik O P.Artificial neural network based modules for generator stator winding internal fault classification[J]. Engineering Intelligent Systems for Electrical Engineering and Communications, 1997, 5(4): 229-234. [16] 党晓强, 刘俊勇, 杨可, 等. 水轮发电机定子单相接地故障行波定位[J]. 电力系统自动化, 2006, 30(23): 74-78. Dang Xiaoqiang, Liu Junyong, Yang Ke, et al.Location for stator single phase to ground of hydro-generators based on fault traveling waves[J]. Automation of Electric Power Systems, 2006, 30(23): 74-78. [17] 毕大强, 王祥珩, 李德佳, 等. 发电机定子绕组单相接地故障的定位方法[J]. 电力系统自动化, 2004, 28(22): 55-57, 94. Bi Daqiang, Wang Xiangheng, Li Dejia, et al.Location detection for the stator single-phase ground fault of a generator[J]. Automation of Electric Power Systems, 2004, 28(22): 55-57, 94. [18] 陈俊, 刘梓洪, 王明溪, 等. 不依赖注入式原理的定子单相接地故障定位方法[J]. 电力系统自动化, 2013, 37(4): 104-107. Chen Jun, Liu Zihong, Wang Mingxi, et al.Location method for stator single-phase ground fault independent of injection type principle[J]. Automation of Electric Power Systems, 2013, 37(4): 104-107. [19] 王育学, 尹项根, 张哲, 等. 基于接地电流的大型发电机定子接地保护及精确定位方法[J]. 中国电机工程学报, 2013, 33(31): 147-154, 18. Wang Yuxue, Yin Xianggen, Zhang Zhe, et al.A novel protection and precise location method based on grounding currents for stator ground faults of large generators[J]. Proceedings of the CSEE, 2013, 33(31): 147-154, 18. [20] 黄少锋, 贾文超. 大型汽轮发电机定子单相接地故障定位新方法[J]. 电力系统保护与控制, 2017, 45(9): 35-40. Huang Shaofeng, Jia Wenchao.A new fault location method for stator single-phase ground fault in large turbine generator[J]. Power System Protection and Control, 2017, 45(9): 35-40. [21] 徐彪, 欧阳帆, 朱维钧, 等. 基于绕组分布的大型汽轮机组定子接地故障定位方法[J]. 湖南电力, 2021, 41(3): 46-52. Xu Biao, Ouyang Fan, Zhu Weijun, et al.Novel fault location method of large steam turbine generator stator grounding considering winding distribution[J]. Hunan Electric Power, 2021, 41(3): 46-52. [22] 贾文超, 黄少锋. 水轮发电机定子单相接地故障定位新方法[J]. 电力自动化设备, 2017, 37(2): 134-139. Jia Wenchao, Huang Shaofeng.Stator single-phase grounding fault location for hydro-generator[J]. Electric Power Automation Equipment, 2017, 37(2): 134-139. [23] Daniel F F, Daniel M, Robson A O.Stator-ground fault location method based on third-harmonic measures in high-impedance grounded generators[J]. IEEE Transactions on Power Delivery, 2021, 36(2): 794-802. [24] 殷林鹏, 桂林, 张琦雪, 等. 基于基波电动势分布特征的大型发电机定子接地故障定位方法[J]. 电力自动化设备, 2019, 39(7): 141-146. Yin Linpeng, Gui Lin, Zhang Qixue, et al.Stator grounding fault location method based on distribution characteristics of fundamental wave potential[J]. Electric Power Automation Equipment, 2019, 39(7): 141-146. [25] 毕大强, 王祥珩, 王维俭. 大型水轮发电机中性点接地方式的若干问题分析[J]. 电工技术学报, 2002, 17(4): 7-12. Bi Daqiang, Wang Xiangheng, Wang Weijian.Study on how to ground for the neutral point of large-sized hydro-generator[J]. Transactions of China Electrote-chnical Society, 2002, 17(4): 7-12. [26] 辜承林, 陈乔夫, 熊永前. 电机学[M]. 武汉: 华中科技大学出版社, 2010 [27] 林福, 左曙光, 马琮淦, 等. 考虑开槽的分数槽集中绕组永磁同步电机电枢反应磁场解析计算[J]. 电工技术学报, 2014, 29(5): 29-35. Lin Fu, Zuo Shuguang, Ma Zonggan, et al.Analytical calculation of armature reaction field including slotting effects in PMSM with concentrated fractional-slot winding[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 29-35. [28] 邰能灵, 尹项根. 大型水轮发电机定子绕组接地故障的数字仿真[J]. 电力系统自动化, 2000, 24(9): 19-22. Tai Nengling, Yin Xianggen.Digital simulation for zero-sequence voltage of large hydro-generator during stator ground fault[J]. Automation of Electric Power Systems, 2000, 24(9): 19-22. [29] 王维俭, 王祥珩, 王赞基. 大型发电机变压器内部故障分析与继电保护[M]. 北京: 中国电力出版社, 2006. |
|
|
|