|
|
Application of Adaptive Symplectic Geometry Modal Decomposition and Short-Time Energy Difference Factor in Power Quality Disturbance Detection |
Li Yunfeng, Gao Yunpeng, Cai Xingyue, Zhu Yanqing, Wu Cong |
College of Electrical and Information Engineering Hunan University Changsha 410082 China |
|
|
Abstract To solve the problem that the power quality disturbance signal in power grid is difficult to detect accurately in the strong noise environment, an algorithm for power quality disturbance detection based on adaptive symplectic geometric mode decomposition and short-time energy difference factor is proposed in this paper. Firstly, the filter reconstruction of traditional symplectic geometric mode decomposition is improved based on adaptive symplectic geometric mode decomposition to reconstruct power quality disturbance signals accurately. Then, the short-term energy of the reconstructed signal is calculated to derive the parameter free adaptive threshold calculation formula based on short-time energy and construct the short-term energy differential factor. Based on this, a power quality disturbance detection platform based on virtual instrument is developed to detect the power quality disturbance accurately in real life. The simulation and the experimental results show that the proposed algorithm can detect the disturbance start and end time effectively for single disturbance, complex disturbance and zero crossing disturbance under noise environment, and can effectively overcome the influence of disturbance amplitude fluctuation on the detection results. Compared with the existing detection algorithm, the measurement results are more rapid and accurate.
|
Received: 04 August 2021
|
|
|
|
|
[1] Li Feng, Gao Yunpeng, Cao Yijia, et al.Improved teager energy operator and improved chirp-Z transform for parameter estimation of voltage flicker[J]. IEEE Transactions on Power Delivery, 2016, 31(1): 245-253. [2] 张民谣, 高云鹏, 吴聪, 等. 基于自适应变分模式分解的非稳态电压闪变包络参数检测[J]. 电工技术学报, 2021, 36(3): 599-608. Zhang Minyao, Gao Yunpeng, Wu Cong, et al.Non-stationary voltage flicker envelope parameters detection based on adaptive variational mode decomposition[J]. Transactions of China Electrote-chnical Society, 2021, 36(3): 599-608. [3] 辛国庆, 董唯光, 高锋阳, 等. 感应电能供电技术下含间谐波的谐波信号重构[J]. 电工技术学报, 2020, 35(21): 4544-4552. Xin Guoqing, Dong Weiguang, Gao Fengyang, et al.Reconstruction of harmonic signal with inter-harmonics under inductive power supply technology[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4544-4552. [4] 杜文龙, 杨洪耕, 马晓阳. 基于快速独立分量分析的谐波/间谐波频谱分离算法[J]. 电力系统自动化, 2020, 44(13): 115-122. Du Wenlong, Yang Honggeng, Ma Xiaoyang.Harmonic/interharmonic spectrum separation algorithm based on fast independent component analysis[J]. Automation of Electric Power Systems, 2020, 44(13): 115-122. [5] 肖贤贵, 李开成, 蔡得龙, 等. 一种电能质量扰动信号的联合去噪算法[J]. 电工技术学报, 2021, 36(21): 4418-4428. Xiao Xiangui, Li Kaicheng, Cai Delong, et al.A combined de-noising method for power quality disturbances events[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4418-4428. [6] 宋杰. 电能质量监测系统的设计实现和车载应用[J]. 电气技术, 2020, 21(11): 50-56. Song Jie.Design and implementation of power quality monitoring system and vehicle application[J]. Electrical Engineering, 2020, 21(11): 50-56. [7] 卓金宝, 施伟锋, 兰莹, 等. 基于改进形态滤波器和弧长差分序列的微电网电能质量扰动定位与识别[J]. 电工技术学报, 2017, 32(17): 21-34. Zhuo Jinbao, Shi Weifeng, Lan Ying, et al.Location and identification of micro-grid power quality disturbances based on modified morphological filter and arc length differential sequence[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 21-34. [8] 安海清, 李振动, 岳娜, 等. 基于稀疏复原算法的风电并网电压闪变包络线提取[J]. 电力系统自动化, 2020, 44(7): 139-144. An Haiqing, Li Zhendong, Yue Na, et al.Envelope tracking of voltage flicker caused by wind power integration based on sparse recovery algorithm[J]. Automation of Electric Power Systems, 2020, 44(7): 139-144. [9] 王鹤, 李石强, 于华楠, 等. 基于分布式压缩感知和边缘计算的配电网电能质量数据压缩存储方法[J].电工技术学报, 2020, 35(21): 4553-4564. Wang He, Li Shiqiang, Yu Huanan, et al.Compression acquisition method for power quality data of distribution network based on distributed compressed sensing and edge computing[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4553-4564. [10] Li Yaxin, Teng Zhaosheng, Liang Chengbin, et al.Detection and localization of short duration variations using sliding window SVD and sparse signal decomposition[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6912-6920. [11] Bhuiyan S M, Khan J, Murphy G.WPD for detecting disturbances in presence of noise in smart grid for PQ monitoring[J]. IEEE Transactions on Industry Applications, 2018, 54(1): 702-711. [12] 吴建章, 梅飞, 郑建勇, 等. 基于改进经验小波变换和XGBoost的电能质量复合扰动分类[J]. 电工技术学报, 2022, 37(1): 232-243, 253. Wu Jianzhang, Mei Fei, Zheng Jianyong, et al.Recognition of multiple power quality disturbances based on modified empirical wavelet transform and XGBoost[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 232-243, 253. [13] 徐永海, 赵燕. 基于短时傅里叶变换的电能质量扰动识别与采用奇异值分解的扰动时间定位[J]. 电网技术, 2011, 35(8): 174-180. Xu Yonghai, Zhao Yan.Identification of power quality disturbance based on short-term Fourier transform and disturbance time orientation by singular value decomposition[J]. Power System Technology, 2011, 35(8): 174-180. [14] Wang Yan, Li Qunzhan, Zhou Fulin, et al.A new method with Hilbert transform and slip-SVD-based noise-suppression algorithm for noisy power quality monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(4): 987-1001. [15] Pan Haiyang, Yang Yu, Li Xin, et al.Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis[J]. Mechanical Systems & Signal Processing, 2019, 114: 189-211. [16] 林森, 靳行, 王延翠. 迭代辛几何模态分解的高速列车轴承故障诊断[J]. 振动工程学报, 2020, 33(6): 1324-1331. Lin Sen, Jin Hang, Wang Yancui.High speed train bearings fault diagnosis of iteration symplectic geometry mode decomposition[J]. Journal of Vibration Engineering, 2020, 33(6): 1324-1331. [17] 胡明, 郭健鹏, 李富强, 等. 基于自适应CEEMD方法的电能质量扰动检测与分析[J]. 电力系统保护与控制, 2018, 46(21): 103-110. Hu Ming, Guo Jianpeng, Li Fuqiang, et al.Power quality disturbance detection and analysis based on adaptively complementary ensemble empirical mode decomposition method[J]. Power System Protection and Control, 2018, 46(21): 103-110. [18] Bonizzi P, Karel J, Meste O, et al.Singular spectrum decomposition: a new method for time series decomposition[J]. Advances in Adaptive Data Analysis, 2014, 6(4): 107-109. [19] 李虹, 徐小力, 吴国新, 等. 基于MFCC的语音情感特征提取研究[J]. 电子测量与仪器学报, 2017, 31(3): 448-453. Li Hong, Xu Xiaoli, Wu Guoxin, et al.Research on speech emotion feature extraction based on MFCC[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(3): 448-453. [20] 杨晓梅, 罗月婉, 肖先勇, 等. 基于自适应阈值和奇异值分解的电能质量扰动检测新方法[J]. 电网技术, 2018, 42(7): 2286-2294. Yang Xiaomei, Luo Yuewan, Xiao Xianyong, et al.A new detection approach of power quality disturbances based on adaptive threshold and singular value decomposition[J]. Power System Technology, 2018, 42(7): 2286-2294. [21] 杨晓梅, 郭朝云, 樊博, 等. 采用奇异值梯度信息的暂态电能质量扰动自适应检测方法[J]. 电力自动化设备, 2019, 39(6): 138-145. Yang Xiaomei, Guo Chaoyun, Fan Bo, et al.Adaptive detection method of transient power quality disturbance based on singular value gradient information[J]. Electric Power Automation Equipment, 2019, 39(6): 138-145. |
|
|
|