|
|
Low Switching Frequency Model Predictive Control Strategy Based on Online Parameter Identification Compensation of Linear Induction Motor for Urban Rail Application |
Xu Wei1, Dong Dinghao1, Ge Jian1, Li Weiye2, Lin Guobin3, Liu Zhicheng4, Yuan Wenye5 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 China 2. Xiangyang CRRC Motor Technology Co. Ltd Xiangyang 441047 China 3. Maglev Transportation Engineering R&D Center Tongji University Shanghai 201804 China 4. Guangzhou Metro Group Co. Ltd Guangzhou 510330 China 5. Zhuzhou CRRC Times Electric Co. Ltd Zhuzhou 412001 China |
|
|
Abstract To reduce the hardware cost of converter and switching loss, the linear induction motor (LIM) and drive system for urban rail application with strong current and high capacity usually need to operate in a low-switching-frequency mode. However, the conventional low-switching-frequency control method often amplify the influence of discretization error in micro-processor while introducing severe harmonic current and thrust fluctuations, thereby deteriorating the observer performance. Therefore, a multistep finite control set model predictive control (FCS-MPC) strategy with online parameter identification is proposed, which can reduce the current harmonic under low-switching- frequencies and enhance the reliability of system by using high precise parameters. Firstly, the MPC algorithm with switching item in cost function is adopted to realize low switching frequency control at high sampling frequency. Furthermore, the multistep mode is used to suppress the increase of harmonic content caused by the reduction of switching frequency. Then, the influence of the two different low-switching-frequency realization methods on performance is compared. Considering that the magnetizing inductance in LIM for urban rail is deeply affected by the end effect, the parameter sensitivity of the MPC method is further analyzed and the parameter identification is introduced, which realizes the accurate estimation of magnetizing inductance at low-switching-frequency, improves the precision of prediction accuracy and parameter robustness of MPC, and reduces the harmonic content in the drive system. Simulation and experimental results show that the proposed method can well realize accurate tracking of the magnetizing inductance in LIM at low-switching frequency, and effectively suppress the current harmonic of the drive system combined with the multistep FCS-MPC algorithm.
|
Received: 10 November 2021
|
|
|
|
|
[1] 徐伟, 肖新宇, 董定昊, 等. 直线感应电机效率优化控制技术综述[J]. 电工技术学报, 2021, 36(5): 902-915, 934. Xu Wei, Xiao Xinyu, Dong Dinghao, et al.Review on efficiency optimization control strategies of linear induction machines[J]. Transactions of China Electro- technical Society, 2021, 36(5): 902-915, 934. [2] 叶云岳. 直线电机原理与应用[M]. 北京: 机械工业出版社, 2000. [3] 龙遐令. 直线感应电动机的理论和电磁设计方法[M]. 北京: 科学出版社, 2006. [4] 吕刚. 直线电机在轨道交通中的应用与关键技术综述[J]. 中国电机工程学报, 2020, 40(17): 5665-5674. Lü Gang.Review of the application and key tech- nology in the linear motor for the rail transit[J]. Proceedings of the CSEE, 2020, 40(17): 5665-5674. [5] 张千, 刘慧娟, 马杰芳, 等. 考虑后退行波的长初级双边直线感应电机电磁性能计算[J]. 电工技术学报, 2020, 35(7): 1398-1409. Zhang Qian, Liu Huijuan, Ma Jiefang, et al.Calcu- lation of electromagnetic performance for long primary double sided linear induction motors con- sidering backward traveling wave[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1398-1409. [6] 吕刚, 罗志昆. 次级断续时直线感应牵引电机的等效电路[J]. 电工技术学报, 2021, 36(6): 1103-1112. Lü Gang, Luo Zhikun.An equivalent circuit of linear induction traction motor with discontinuous second- dary[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1103-1112. [7] Xu Wei, Zhu Jianguo, Guo Youguang, et al.Equiva- lent circuits for single-sided linear induction motors[C]//IEEE Energy Conversion Congress and Exposition, San Jose, USA, 2009: 1288-1295. [8] Duncan J.Linear induction motor-equivalent-circuit model[J]. IEE Proceedings B Electric Power Appli- cations, 1983, 130(1): 51-57. [9] Xu Wei, Zhu Jianguo, Zhang Yongchang, et al.An improved equivalent circuit model of a single-sided linear induction motor[J]. IEEE Transactions on Vehicular Technology, 2010, 59(5): 2277-2289. [10] Pucci M.State space-vector model of linear induction motors[J]. IEEE Transactions on Industry Appli- cations, 2014, 50(1): 195-207. [11] Zou Jianqiao, Xu Wei, Yu Xinghuo, et al.Multistep model predictive control with current and voltage constraints for linear induction machine based urban transportation[J]. IEEE Transactions on Vehicular Technology, 2017, 66(12): 10817-10829. [12] Dian Renjun, Xu Wei, Zhu Jianguo, et al.An improved speed sensorless control strategy for linear induction machines based on extended state observer for linear metro drives[J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 9198-9210. [13] Levi E, Wang Mingyu.Online identification of the mutual inductance for vector controlled induction motor drives[J]. IEEE Transactions on Energy Con- version, 2003, 18(2): 299-305. [14] Liu Lu, Guo Yafeng, Wang Jun.Online identification of mutual inductance of induction motor without mag- netizing curve[C]//2018 IEEE Annual American Control Conference (ACC), Milwaukee, WI, USA, 2018: 3293-3297. [15] Ren Jinqi, Li Yaohua.MRAS based online mag- netizing inductance estimation of linear induction motor[C]//2007 IEEE International Conference on Electrical Machines and Systems (ICEMS), Seoul, Korea (South), 2007: 1580-1583. [16] Dong Dinghao, Xu Wei, Xiao Xinyu, et al.Online magnetizing inductance identification strategy of linear induction motor based on second-order sliding- mode observer and MRAS[C]//2021 IEEE 13th Inter- national Symposium on Linear Drives for Industry Applications (LDIA), Wuhan, China, 2021: 1-6. [17] 杨明, 张扬, 曹何金生, 等. 交流伺服系统控制器参数自整定及优化[J]. 电机与控制学报, 2010, 14(12): 29-34. Yang Ming, Zhang Yang, Cao Hejinsheng, et al.Gain self-tuning of PI controller and parameter optimum for PMSM drives[J]. Electric Machines and Control, 2010, 14(12): 29-34. [18] Zhang Yongchang, Jiao Jian, Liu Jie.Direct power control of PWM rectifiers with online inductance identification under unbalanced and distorted network conditions[J]. IEEE Transactions on Power Elec- tronics, 2019, 34(12): 12524-12537. [19] Kwak S, Moon U C, Park J C.Predictive-control- based direct power control with an adaptive parameter identification technique for improved AFE perfor- mance[J]. IEEE Transactions on Power Electronics, 2014, 29(11): 6178-6187. [20] 周明磊, 游小杰, 王琛琛. 电力机车牵引传动系统矢量控制[J]. 电工技术学报, 2011, 26(9): 110-115, 129. Zhou Minglei, You Xiaojie, Wang Chenchen.Vector control of driving system of locomotive[J]. Transa- ctions of China Electrotechnical Society, 2011, 26(9): 110-115, 129. [21] 陈杰, 李军, 邱瑞昌, 等. 轨道交通牵引系统空间矢量脉宽调制同步过调制策略研究[J]. 电工技术学报, 2020, 35(增刊1): 91-100. Chen Jie, Li Jun, Qiu Ruichang, et al.Research on space vector PWM synchronous overmodulation in rail transit traction system[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 91-100. [22] Xin Zhen, Loh P C, Wang Xiongfei, et al.Highly accurate derivatives for LCL-filtered grid converter with capacitor voltage active damping[J]. IEEE Transactions on Power Electronics, 2016, 31(5): 3612-3625. [23] Bottura C P, Silvino J L, de Resende P. A flux observer for induction machines based on a time- variant discrete model[J]. IEEE Transactions on Industry Applications, 1993, 29(2): 349-354. [24] Yin Shaobo, Huang Yingwei, Xue Yaru, et al.Improved full-order adaptive observer for sensorless induction motor control in railway traction systems under low-switching frequency[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(4): 2333-2345. [25] 贾成禹, 王旭东, 周凯. 基于线性变参数模型预测控制的内置式永磁同步电机转速控制器设计[J]. 电工技术学报, 2020, 35(22): 4666-4677. Jia Chengyu, Wang Xudong, Zhou Kai.Design of interior permanent magnet synchronous motor speed controller based on linear parameter-varying model predictive control[J]. Transactions of China Electro- technical Society, 2020, 35(22): 4666-4677. [26] Xu Wei, Dong Dinghao, Zou Jianqiao, et al.Low- complexity multistep model predictive current control for linear induction machines[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 8388-8398. [27] Majumdar A, Bhattacharya T K.Comparison of force developed in a linear induction machine and an equivalent arc linear induction machine at zero velocity[C]//2018 IEEE International Conference on Power Electronics, Drives and Energy Systems, Chennai, India, 2018: 1-5. |
|
|
|