|
|
Analyzing and Designing a Novel Coreless Linear Induction Maglev Motor for Low Vacuum Pipeline |
Qin Wei1, Ma Yuhua2, Lü Gang1, Li Yuan1, Zhang Jielong1 |
1. School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China 2. Taiyuan Institute of China Coal Technology and Engineering Group Taiyuan 030006 China |
|
|
Abstract A new kind of coreless linear induction maglev motor (CLIMM), which can be used in ultra-high speed maglev, is studied in this paper. The motor is an electro-dynamic system that can simultaneously create suspension and propulsion forces. The basic structure and principle of the proposed motor is firstly described. Then, an integral approach is proposed for modeling the vector magnetic potential of the primary winding. Taking the vector magnetic potential as the variable, a 2D analytic model of the CLIMM is proposed. Consequently, the magnetic field in the air gap, the lift force, the thrust force and the efficiency are calculated. Finite element analysis results verify the analytical prediction. Finally, the CLIMM with copper coil is designed and established to verify the analytical model.
|
Received: 26 March 2021
|
|
|
|
|
[1] 马卫华, 罗世辉, 张敏, 等. 中低速磁浮车辆研究综述[J]. 交通运输工程学报, 2021, 21(1): 199-216. Ma Weihua, Luo Shihui, Zhang Min, et al.Research review on medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216. [2] 熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177-198. Xiong Jiayang, Deng Zigang.Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177-198. [3] 章九鼎, 卢琴芬. 长定子直线同步电机齿槽效应的计算与影响[J]. 电工技术学报, 2021, 36(5): 964-972, 1026. Zhang Jiuding, Lu Qinfen.Calculation and influences of cogging effects in long-stator linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 964-972, 1026. [4] Xu Wei, Hu Dong, Lei Gang, et al.System-level efficiency optimization of a linear induction motor drive system[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(3): 285-291. [5] 朱进权, 葛琼璇, 王晓新, 等. 基于自抗扰和负载功率前馈的高速磁悬浮系统PWM整流器控制策略[J]. 电工技术学报, 2021, 36(2): 320-329. Zhu Jinquan, Ge Qiongxuan, Wang Xiaoxin, et al.Control strategy for PWM rectifier of high-speed maglev based on active disturbance rejection control and load power feed-forward[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 320-329. [6] 朱进权, 葛琼璇, 孙鹏琨, 等. 高速磁悬浮列车在双端供电模式下的电流控制策略[J]. 电工技术学报, 2021, 36(23): 4937-4947. Zhu Jinquan, Ge Qiongxuan, Sun Pengkun, et al.Current control strategy for high-speed maglev in the double feeding mode[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 4937-4947. [7] 王一宇, 蔡尧, 宋旭亮, 等. 零磁通式电动悬浮等效模拟系统的特性分析与实验[J]. 电工技术学报, 2021, 36(8): 1628-1635. Wang Yiyu, Cai Yao, Song Xuliang, et al.Charac- teristic analysis and experiment of the equivalent simulation system for null-flux electrodynamic suspension[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1628-1635. [8] Sawada K.Outlook of the superconducting maglev[J]. Proceedings of the IEEE, 2009, 97(11): 1881-1885. [9] Murai M, Tanaka M.Magnetic levitation (maglev) technologies[J]. Japan Railway & Transport Review, 2000, 25: 61-67. [10] Fujiwara S, Fujimoto T.Characteristics of combined levitation and guidance EDS maglev system[J]. Electrical Engineering in Japan, 1993, 113(3): 123-134. [11] Lee H W, Kim K C, Lee Ju.Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. [12] 冯仲伟, 方兴, 李红梅, 等. 低真空管道高速磁悬浮系统技术发展研究[J]. 中国工程科学, 2018, 20(6): 105-111. Feng Zhongwei, Fang Xing, Li Hongmei, et al.Technological development of high speed maglev system based on low vacuum pipeline[J]. Engineering Sciences, 2018, 20(6): 105-111. [13] 刘文旭, 李文龙, 方进. 高温超导磁悬浮技术研究论述[J]. 低温与超导, 2020, 48(2): 44-49. Liu Wenxu, Li Wenlong, Fang Jin.Review of research on high temperature maglev[J]. Cryogenics & Superconductivity, 2020, 48(2): 44-49. [14] 邓自刚, 李海涛. 高温超导磁悬浮车研究进展[J]. 中国材料进展, 2017, 36(5): 329-334, 351. Deng Zigang, Li Haitao.Recent development of high- temperature superconducting maglev[J]. Materials China, 2017, 36(5): 329-334, 351. [15] 孙鹏琨, 葛琼璇, 王晓新, 等. 磁悬浮列车在双端供电模式下的无速度传感器控制[J]. 电工技术学报, 2018, 33(18): 4249-4256. Sun Pengkun, Ge Qiongxuan, Wang Xiaoxin, et al.Speed sensorless control of maglev train with double- end power supply[J]. Transactions of China Electro- technical Society, 2018, 33(18): 4249-4256. [16] Post R F, Ryutov D D.The inductrack: a simpler approach to magnetic levitation[J]. IEEE Transactions on Applied Superconductivity, 2000, 10(1): 901-904. [17] 巫川, 李冠醇, 王东. 永磁电动悬浮系统三维解析建模与电磁力优化分析[J]. 电工技术学报, 2021, 36(5): 924-934. Wu Chuan, Li Guanchun, Wang Dong.3-D analytical modeling and electromagnetic force optimization of permanent magnet electrodynamic suspension system[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 924-934. [18] Paul S, Bobba D, Paudel N, et al.Source field modeling in air using magnetic charge sheets[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3879-3882. [19] Paul S, Bird J Z.Improved analytic model for eddy current force considering edge-effect of a conductive plate[C]//2016 IEEE XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 2016: 789-795. [20] Bird J, Lipo T A.Modeling the 3-D rotational and translational motion of a Halbach rotor above a split- sheet guideway[J]. IEEE Transactions on Magnetics, 2009, 45(9): 3233-3242. [21] Fujii N, Nonaka S, Hayashi G.Design of magnet wheel integrated own drive[J]. IEEE Transactions on Magnetics, 1999, 35(5): 4013-4015. [22] Fujii N, Chida M, Ogawa K.Three dimensional force of magnet wheel with revolving permanent mag- nets[J]. IEEE Transactions on Magnetics, 1997, 33(5): 4221-4223. [23] Fujii N, Naotsuka K, Ogawa K, et al.Basic charac- teristics of magnet wheels with rotating permanent magnets[C]//Proceedings of 1994 IEEE Industry Applications Society Annual Meeting, Denver, CO, USA, 1994: 203-209. |
|
|
|