|
|
Feature Extraction of Partial Discharge Source with Complex Noise Based on Adaptive S-Transform and Truncated Compact Singular Value Decomposition |
Ning Shuguang1, He Yigang1,2, Cheng Tongtong1, Sui Yongbo1, Huang Yuan1 |
1. School of Electrical Engineering and Automation Hefei University of Technology Hefei University of Technology Hefei 230009 China; 2. School of Electrical Engineering Wuhan University Wuhan 430072 China |
|
|
Abstract To solve the problem that the features of the partial discharge (PD) source are difficult to extract because the PD source signal is polluted by the complex noise, a PD source complex noise feature extraction method is proposed based on the adaptive S-transform and the truncated compact singular value decomposition (TCSVD). First, the S-transform is optimized and improved, and then applied for the PD source to obtain the time-frequency domain matrix. The narrow-band interference signal is filtered adaptively, and the useful time-frequency signal of partial discharge is extracted. Second, compact singular value decomposition is utilized to decompose the extracted time-frequency matrix. Then, the fitting derivative method is proposed to find the singular value threshold parameters and truncate the singular value, the white noise signal in PD source is filtered. Finally, the proposed PD source feature extraction method is verified and analyzed by theoretical simulation and field test. The results indicate that the feature extraction method has well feature extraction ability for the PD signal with complex noise, and can be utilized to effectively extract useful information of PD signal.
|
Received: 04 July 2021
|
|
|
|
|
[1] 宋思蒙, 钱勇, 王辉, 等. 基于方向梯度直方图属性空间的局部放电模式识别改进算法[J]. 电工技术学报, 2021, 36(10): 2153-2160. Song Simeng, Qian Yong, Wang Hui, et al.Improved algorithm for partial discharge pattern recognition based on histogram of oriented gradient attribute space[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2153-2160. [2] 钱勇, 黄成军, 陈陈, 等. 基于经验模态分解的局部放电去噪方法[J]. 电力系统自动化, 2005, 29(12): 53-60. Qian Yong, Huang Chengjun, Chen Chen, et al.Denoising of partial discharge based on empirical mode decomposition[J]. Automation of Electric Power Systems, 2005, 29(12): 53-60. [3] 王德文, 周青. 一种电力设备状态监测大数据的分布式联机分析处理方法[J]. 中国电机工程学报, 2016, 36(19): 5111-5121. Wang Dewen, Zhou Qing.A method of distributed on-line analytical processing of status monitoring big data of electric power equipment[J]. Proceedings of the CSEE, 2016, 36(19): 5111-5121. [4] 杨德友, 王丽馨, 蔡国伟. 环境激励与小幅持续周期扰动表现特征及统计学分析[J]. 电工技术学报, 2017, 32(6): 41-48. Yang Deyou, Wang Lixin, Cai Guowei.The statistical characteristics of response undergoing slight sustained periodic disturbance and ambient excitation[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 41-48. [5] 刘青, 常丁戈, 邓军波. 用于变电站站域局部放电特高频测向的空间谱估计算法优化选择[J]. 电工技术学报, 2020, 35(16): 3551-3560. Liu Qing, Chang Dingge, Deng Junbo.Optimal selection on spatial spectrum estimation algorithms for UHF direction finding of partial discharge in substation[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3551-3560. [6] 司文荣, 李军浩, 袁鹏, 等. 局部放电脉冲信号ICA提取技术的初步研究[J]. 高电压技术, 2008, 34(6): 1277-1282. Si Wenrong, Li Junhao, Yuan Peng, et al.Preliminary studyon signal extraction technology for PD pulse based on independent component analysis[J]. High Voltage Engineering, 2008, 34(6): 1277-1282. [7] 钱勇, 黄成军, 戚伟. 基于经验模态分解的自适应滤波算法在局部放电窄带干扰抑制中的应用[J]. 继电器, 2006, 34(22): 27-31. Qian Yong, Huang Chengjun, Qi Wei.Application of adaptive filtering algorithm based on empirical mode decomposition to suppress DSI in PD detection[J]. Relay, 2006, 34(22): 27-31. [8] 朱永利, 王刘旺. 并行EEMD算法及其在局部放电信号特征提取中的应用[J]. 电工技术学报, 2018, 33(11): 2508-2519. Zhu Yongli, Wang Liuwang.Parallel ensemble empirical mode decomposition and its application in feature extraction of partial discharge signals[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2508-2519. [9] 樊高辉, 刘尚合, 刘卫东, 等. FFT谱最小熵解卷积滤波抑制放电信号中的周期性窄带干扰[J]. 高电压技术, 2017, 43(4): 1378-1385. Fan Gaohui, Liu Shanghe, Liu Weidong, et al.Suppression of the periodic narrow-band noise in discharge signal by FFT spectrum minimum entropy deconvolution filtering[J]. High Voltage Engineering, 2017, 43(4): 1378-1385. [10] Zhu Junchen, He Bangle, Wang Xiaodi, et al.Extraction of partial discharge signal feature based on dual-tree complex wavelet transform and singular-value decomposition[C]//2018 Condition Monitoring and Diagnosis (CMD), Perth, WA, Australia, 2018: 1-5. [11] 叶彬, 周凯, 黄永禄, 等. 基于WM的局部放电白噪声自适应抑制方法[J]. 高电压技术, 2021, 47(2): 529-536. Ye Bin, Zhou Kai, Huang Yonglu, et al.Adaptive white noise suppression method for partial discharge based on wave motions[J]. High Voltage Engineering, 2021, 47(2): 529-536. [12] Bag S, Pradhan A K, Das S, et al.Dalai and B. Chatterjee. S-Transform aided random forest based PD location detection employing signature of optical sensor[J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1261-1268. [13] 刘宇舜, 周文俊, 李鹏飞, 等. 基于广义S变换模时频矩阵的局部放电特高频信号去噪方法[J]. 电工技术学报, 2017, 32(9): 215-224. Liu Yushun, Zhou Wenjun, Li Pengfei, et al.Partial discharge ultrahigh frequency signal denoising method based on generalized S-transform modular time-frequency matrix[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 215-224. [14] 罗远林, 李朝晖, 程时杰, 等. 结合数学形态学滤波与频谱校正的发电机局部放电离散谱干扰抑制方法[J]. 中国电机工程学报, 2019, 32(21): 260-269. Luo Yuanlin, Li Zhaohui, Cheng Shijie, et al.A method for suppression discrete spectrum interference in partial discharge of generators combining mathematical morphology filter and spectrum correction[J]. Proceedings of the CSEE, 2019, 32(21): 260-269. [15] Martin S, Andreas W.Fast median filtering for phase or orientation data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 639-652. [16] 代荡荡, 王先培, 龙嘉川, 等. 基于改进Protrugram和小波变换的超高频局部放电信号去噪方法[J]. 高电压技术, 2018, 44(11): 3577-3586. Dai Dangdang, Wang Xianpei, Long Jiachuan, et al.De-noising method of ultra-high frequency partial discharge signal based on improved Protrugram and wavelet transform[J]. High Voltage Engineering, 2018, 44(11): 3577-3586. [17] 钱帅伟, 彭彦军, 周泽民, 等. 以提升小波包系数熵为特征值的隐马尔科夫电缆局部放电识别[J]. 电气技术, 2020, 21(10): 93-102. Qian Shuaiwei, Peng Yanjun, Zhou Zemin, et al.Partial discharge pattern recognition using hidden Markov models based on the entropy lifting wavelet coefficients[J]. Electrical Engineering, 2020, 21(10): 93-102. [18] 颜湘武, 王俣珂, 贾焦心, 等. 基于非线性最小二乘曲线拟合的虚拟同步发电机惯量与阻尼系数测量方法[J]. 电工技术学报, 2019, 34(7): 1516-1526. Yan Xiangwu, Wang Yuke, Jia Jiaoxin, et al.A VSG inertia and damping measurement method based on nonlinear least-squares curve fitting[J]. Transactions of China Electrotechnical Society 2019, 34(7): 1516-1526. [19] 熊明. 取代拉格朗日乘数法[J]. 高等数学研究, 2016, 19(4): 22-27. Xiong Ming.Replacing lagrange multiplier method[J]. Studies in College Mathematics, 2016, 19(4): 22-27. [20] Sawyer G A, Ishii T K.Derivation and application of a novel integral inequality[J]. Proceedings of the IEEE, 1971, 59(9): 1373-1374. [21] Tang Ju, Zhou Siyuan, Pan Cheng.A denoising algorithm for partial discharge measurement based on the combination of wavelet threshold and total variation theory[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 3428-3441. [22] 周凯, 黄永禄, 谢敏, 等. 短时奇异值分解用于局放信号混合噪声抑制[J]. 电工技术学报, 2019, 34(11): 2435-2443. Zhou Kai, Huang Yonglu, Xie Min, et al.Mixed noises suppression of partial discharge signal employing short-Time singular value decomposition[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2435-2443. |
|
|
|