|
|
Differences in Damage Characteristics of Lightning Current Components A and C to Carbon Fiber Reinforced Polymer |
Zhou Mi1, Su Xiaowei1, Gao Junfu2, Wang Jianguo1, Shan Fei1 |
1. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China; 2. AVIC Research Institute for Special Structures of Aeronautical Composites Jinan 250000 China |
|
|
Abstract Carbon fiber reinforced polymer (CFRP) composite materials are widely used. However, comparing with metals and alloys, due to the lower electrical conductivity, CFRP are prone to being damaged when subjected to lightning strikes. In this study, the current dispersion and damage characteristics of CFRP laminates under the separate injection of lightning current components A and C are compared through the morphology inspection, the ultrasonic C-scan, the residual compressive strength test, and the coupled electric-thermal simulation. It is found that under the current component A, the surface layer of the CFRP laminate produces a fiber burst zone with a length of roughly 120mm and a width of roughly 30mm, whose direction is consistent with that of the laminate. In contrast, after the application of current component C, a circular ablation pit with a diameter of roughly 60mm is produced. Comparing with the undamaged laminate object, the elastic modulus of the laminate after the injection of current component A is scarcely changed, whereas that of the laminate after the injection of current component C is reduced. The maximum compressive strengths of the laminate are slightly increased after the injection of the two components. In the coupled electrical-thermal simulation, the temperature field distribution of the CFRP laminate during the delivery of the component A has obvious directionality, which is consistent with the direction of each layer. The temperature field distribution of each layer of CFRP laminate remains unchanged during the delivery of component C, but it does not relate with the direction of each layer. The temperature field distribution of CFRP under the injection of the two components is, more or less, consistent with the experimental morphology. Obtained results in this paper reveals the damage mechanism of CFRP laminates by two lightning current components with distinctive characteristics, and can provide a basis for lightning protection of CFRP laminates.
|
Received: 11 July 2020
|
|
|
|
|
[1] 雷宇航, 蔡国伟, 潘超. 大气条件下雷击风机叶片初始流注区电场强度与临界长度研究[J]. 电工技术学报, 2019, 34(20): 226-233. Lei Yuhang, Cai Guowei, Pan Chao.Research of electric field of lightning initial streamer from wind turbine blade and critical length based on atmospheric conditions[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 226-233. [2] 王宇, 王建国, 周蜜, 等. 双接闪器叶片风电机组缩比模型雷击附着特性[J]. 中国电机工程学报, 2018, 38(18): 5307-5315. Wang Yu, Wang Jianguo, Zhou Mi, et al.Lightning attachment characteristic of wind turbine blade with two-receptors[J]. Proceedings of the CSEE, 2018, 38(18): 5307-5315. [3] 蔡国伟, 雷宇航, 葛维春, 等. 高寒地区风电机组雷电防护研究综述[J]. 电工技术学报, 2019, 34(22): 4804-4815. Cai Guowei, Lei Yuhang, Ge Weichun, et al.Review of research on lightning protection for wind turbines in alpine areas[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4804-4815. [4] 夏安俊, 乔颖, 鲁宗相, 等. 风电机组与储能装置的协调平滑控制策略[J]. 电机与控制学报, 2016, 20(1): 1-6. Xia Anjun, Qiao Ying, Lu Zongxiang, et al.Coordinated smoothing control strategy of wind turbine and energy storage device[J]. Electric Machines and Control, 2016, 20(1): 1-6. [5] Wang Yeqing, Zhupanska O I.Lightning strike thermal damage model for glass fiber reinforced polymer matrix composites and its application to wind turbine blades[J]. Composite Structures, 2015, 132: 1182-1191. [6] 曹雯, 宋倩文, 申巍, 等. 环氧/纸复合材料直流耐压寿命模型的估计方法[J]. 电工技术学报, 2019, 34(18): 3750-3758. Cao Wen, Song Qianwen, Shen Wei, et al.Estimation methods of DC withstand voltage lifetime model for epoxy/paper composites[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3750-3758. [7] 谢庆, 张采芹, 闫纪源, 等. 不均匀直流电场下绝缘材料表面电荷积聚与消散特性[J]. 电工技术学报, 2019, 34(4): 817-830. Xie Qing, Zhang Caiqin, Yan Jiyuan, et al.Study on accumulation and dissipation of surface charges of insulating materials under uneven DC field[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 817-830. [8] Xie Jianhe, Lu Zhongyu, Guo Yongchang, et al.Durability of CFRP sheets and epoxy resin exposed to natural hygrothermal or cyclic wet-dry environment[J]. Polymer Composites, 2019, 40(2): 553-567. [9] Kumar V, Yokozeki T, Karch C, et al.Factors affecting direct lightning strike damage to fiber reinforced composites: a review[J]. Composites Part B: Engineering, 2020, 183:107688. [10] Brown S C, Robert C, Koutsos V, et al.Methods of modifying through-thickness electrical conductivity of CFRP for use in structural health monitoring, and its effect on mechanical properties-a review[J]. Composites Part A: Applied Science and Manufacturing, 2020, 133: 105885. [11] Sun Jinru, Yao Xueling, Tian Xiangyu, et al.Damage characteristics of CFRP laminates subjected to multiple lightning current strike[J]. Applied Composite Materials, 2019, 26(3): 745-762. [12] 刘亚坤, 戴明秋, 毕晓蕾, 等. 三种冲击电流连续作用下铝3003合金的损伤特性[J]. 电工技术学报, 2020, 35(6): 25-32. Liu Yakun, Dai Mingqiu, Bi Xiaolei, et al.Damage characteristics of Al alloy 3003 suffered from three continuous impulse currents[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 25-32. [13] 周蜜, 卢泳茵, 王建国, 等. 人工触发闪电回击电流与通道光辐射强度关系[J]. 高电压技术, 2020, 46(8): 2839-2848. Zhou Mi, Lu Yongyin, Wang Jianguo, et al.Return-stroke current and resultant channel luminosity in rocket-triggered lightning[J]. High Voltage Engineering, 2020, 46(8): 2839-2848. [14] 周蜜, 丁文汉, 王建国, 等. 闪电连接高度对地面电场波形的影响[J]. 电工技术学报, 2021, 36(4): 857-868. Zhou Mi, Ding Wenhan, Wang Jianguo, et al.Effect of lightning junction height on ground electric field waveform[J]. Transactions of China Electrotechnical Society, 2021, 36(4): 857-868. [15] 刘亚坤, 肖瑶, 刘全桢, 等. 不同雷电流分量作用下钢合金Q235B的损伤与温升特性[J]. 中国电机工程学报, 2019, 39(20): 6131-6137. Liu Yakun, Xiao Yao, Liu Quanzhen, et al.Damage characteristics and temperature rise of steel alloy Q235B suffered from different lightning current components[J]. Proceedings of the CSEE, 2019, 39(20): 6131-6137. [16] Aircraft lightning test methods: SAEARP 5416[S]. Warrendale: Society of Automotive Engineers, 2005. [17] Feraboli P, Miller M.Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(6-7): 954-967. [18] Feraboli P, Kawakami H.Damage of carbon/epoxy composite plates subjected to mechanical impact and simulated lightning[J]. Journal of Aircraft, 2010, 47(3): 999-1012. [19] Hirano Y, Katsumata S, Iwahori Y, et al.Artificial lightning testing on graphite/epoxy composite laminate[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(10): 1461-1470. [20] 肖尧, 尹俊杰, 李曙林, 等. 雷电流组合波形下碳纤维/环氧树脂基复合材料层压板雷击损伤试验[J]. 复合材料学报, 2018, 35(6): 82-88. Xiao Yao, Yin Junjie, Li Shulin, et al.Lightning strike damage test research for carbon fiber/epoxy resin matrix composite laminates when subjected to combined lightning current waveforms[J]. Acta Materiae Compositae Sinica, 2018, 35(6): 82-88. [21] 姚学玲, 郭灿阳, 孙晋茹, 等. 碳纤维复合材料在雷电流作用下的损伤仿真与试验[J]. 高电压技术, 2017, 43(5): 1400-1408. Yao Xueling, Guo Canyang, Sun Jinru, et al.Damage simulation and experiment of carbon fiber composites subjected to lightning current[J]. High Voltage Engineering, 2017, 43(5): 1400-1408. [22] 孙晋茹, 姚学玲, 李亚丰, 等. 碳纤维增强树脂复合材料在多重连续雷电流冲击下的损伤特性[J]. 复合材料学报, 2019, 36(12): 2764-2771. Sun Jinru, Yao Xueling, Li Yafeng, et al.Damage properties of carbon fiber reinforced epoxy composite subjects to multiple continuous lightning current strikes[J]. Acta Materiae Compositae Sinica, 2019, 36(12): 2764-2771. [23] 丁宁, 赵彬. 复合材料层合板雷击烧蚀损伤影响因素分析[J]. 材料热处理学报, 2014, 35(2): 186-192. Ding Ning, Zhao Bin.Analysis of damage influence factors on ablation damage of composite laminates subjected lightning strike[J]. Transactions of Materials and Heat Treatment, 2014, 35(2): 186-192. [24] 丁宁, 赵彬, 刘志强, 等. 复合材料层合板雷击烧蚀损伤模拟[J]. 航空学报, 2013, 34(2): 301-308. Ding Ning, Zhao Bin, Liu Zhiqiang, et al.Simulation of ablation damage of composite laminates subjected to lightning strike[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 301-308. [25] Ogasawara T, Hirano Y, Yoshimura A.Coupled thermal-electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(8): 973-981. [26] Chemartin L, Lalande P, Peyrou B, et al.Direct effects of lightning on aircraft structure: analysis of the thermal, electrical and mechanical constraints[J]. Aerospace Lab, 2012, 9(5): 1-15. [27] 付尚琛, 石立华, 周颖慧, 等. 喷铝涂层碳纤维增强树脂基复合材料抗雷击性能实验及仿真[J]. 复合材料学报, 2018, 35(10): 136-150. Fu Shangchen, Shi Lihua, Zhou Yinghui, et al.Lightning protection performance experiment and simulation of carbon fiber reinforced polymer sprayed with aluminum particles[J]. Acta Materiae Compositae Sinica, 2018, 35(10): 136-150. [28] Yamashita S, Sonehara T, Takahashi J, et al.Effect of thin-ply on damage behaviour of continuous and discontinuous carbon fibre reinforced thermoplastics subjected to simulated lightning strike[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 132-140. [29] 王建国, 裴立献, 薛健, 等. 雷电连续电流对铝合金板材的烧蚀特性[J]. 高电压技术, 2018, 44(11): 3540-3545. Wang Jianguo, Pei Lixian, Xue Jian, et al.Arc erosion effect of lightning continuous current on aluminum alloy sheet[J]. High Voltage Engineering, 2018, 44(11): 3540-3545. |
|
|
|