|
|
Synchronous Reluctance Machine Based on Asymmetrical Rotor Structure and Sequential Taguchi Robust Optimization Method |
Liu Chengcheng1,2, Wang Kelin1,2, Wang Shaopeng1,2, Wang Youhua1,2, Zhu Jianguo3 |
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China; 3. School of Electrical and Information Engineering University of Sydney Sydney 2006 Australia |
|
|
Abstract At present, the design for rotor of the traditional synchronous reluctance machine (SynRM) with three-layer flux barrier has better performance and convenient manufacture, which has been recognized by the industry. Discussing the asymmetric magnetic flux barrier structure and the deformation of the magnetic flux barrier structure of the rotor is very important to fully grasp the characteristics of SynRM. Therefore, the asymmetrical design principle of SynRM under different power levels and the SynRM with quasi-salient pole rotor based on sequential Taguchi robust optimization method have been proposed. First of all, the asymmetrical design principle of restraining torque ripple is obtained by optimizing the traditional SynRM according to a certain power level. Then based on the salient rotor structure of switched reluctance machine (SRM), the SynRM with quasi-salient pole rotor is designed. The sequential Taguchi robust optimization method (STROM) has been used to get the optimal size of the 12-slot/8-pole machine with the distributed winding. The performance of the machine with different windings has been compared and analyzed by using the magnetic circuit model and finite element method. Finally, a SynRM with simpler structure and lower manufacturing cost is proposed.
|
Received: 10 July 2020
|
|
|
|
|
[1] 杨晨, 白保东, 陈德志, 等. 可变磁通永磁辅助同步磁阻电机设计与性能分析[J]. 电工技术学报, 2019, 34(3): 489-496. Yang Chen, Bai Baodong, Chen Dezhi, et al.Design and analysis of a variable flux permanent magnet assisted synchronous motor[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 489-496. [2] 仇一鸣, 康琦, 汪镭, 等. 同步磁阻电机 dq 轴交叉耦合饱和电感模型参数寻优方法[J]. 电工技术学报, 2017, 32(4): 85-92. Qiu Yiming, Kang Qi, Wang Lei, et al.A parameter optimization method for dq axis inductance model of synchronous reluctance motors considering cross-coupling magnetic saturation[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 85-92. [3] 董砚, 颜冬, 荆锴, 等. 磁障渐变同步磁阻电机低转矩脉动转子优化设计[J]. 电工技术学报, 2017, 32(19): 21-31. Dong Yan, Yan Dong, Jing Kai, et al.Rotor optimal design of the gradient flux-barrier for torque ripple reduction in synchronous reluctance motor[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 21-31. [4] 杨淑英, 刘威, 李浩源, 等. 基于旋转注入的同步磁阻电机电感辨识方案[J]. 电工技术学报, 2019, 34(增刊1): 97-104. Yang Shuying, Liu Wei, Li Haoyuan, et al.Inductance identification scheme of synchronous reluctance motor based on rotary injection[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 97-104. [5] 徐心愿, 王云冲, 沈建新. 基于最大转矩电流比的同步磁阻电机DTC-SVM控制策略[J]. 电工技术学报, 2020, 35(2): 246-254. Xu Xinyuan, Wang Yunchong, Shen Jianxin.Direct torque control-space vector modulation control strategy of synchronous reluctance motor based on maximum torque per-ampere[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 246-254. [6] Goncalves A P, Crus S M A, Ferreira F, et al. Synchronous reluctance motor drive for electric vehicles including cross-magnetic saturation[C]//Vehicle Power and Propulsion Conference, Portugal, 2014: 1-6. [7] 沈建新, 蔡顺, 袁赛赛. 同步磁阻电机分析与设计(连载之一)概述[J]. 微电机, 2016, 49(10): 72-79. Shen Jianxin, Cai Shun, Yuan Saisai.Analysis and design of synchronous reluctance machines part I: an overview[J]. Micromotors, 2016, 49(10): 72-79. [8] 徐媚媚, 刘国海, 陈前, 等. 永磁辅助同步磁阻电机设计及其关键技术发展综述[J]. 中国电机工程学报, 2019, 39(23): 7033-7041. Xu Meimei, Liu Guohai, Chen Qian, et al.Design and key technology development of permanent magnet assisted synchronous reluctance motor[J]. Proceedings of the CSEE, 2019, 39(23): 7033-7041. [9] Demidova G L, Heidari H, Andriushchenko E, et al.Comparison of synchronous reluctance machine and permanent magnet-assisted synchronous reluctance machine performance characteristics[C]//27th International Workshop on Electric Drives, Moscow, Russia, 2020: 1-6. [10] Ma Xiyun, Li Guangjin, Zhu Ziqiang, et al.Investigation on synchronous reluctance machines with different rotor topologies and winding configurations[J]. IET Electric Power Applications, 2017, 12(1): 45-53. [11] Alberti L, Bianchi N.Theory and design of fractional-slot multilayer windings[J]. IEEE Transactions on Industry Applications, 2013, 49(2): 841-849. [12] El-Refaie A M. Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 107-121. [13] 沈建新, 蔡顺, 郝鹤, 等. 同步磁阻电机分析与设计(连载之十)同步磁阻电机与开关磁阻电机定转子的组合应用[J]. 微电机, 2017, 50(2): 71-76. Shen Jianxin, Cai Shun, Hao He, et al.Analysis and design of synchronous reluctance machines part X: combination of stators and rotors of synchronous reluctance machine and switched reluctance machine[J]. Micromotors, 2017, 50(2): 71-76. [14] 王峰, 吴志强, 李亚杰, 等. 开关磁阻电机转子径向电磁合力的解析建模[J]. 电工技术学报, 2019, 34(5): 934-945. Wang Feng, Wu Zhiqiang, Li Yajie, et al.Analytical modeling of rotor radial electromagnetic force in switched reluctance motor[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 934-945. [15] Liu Xu, Zhu Ziqiang.Analysis of average torque in switched reluctance motor with unipolar and bipolar excitations based on an improved fourier series model[C]//Proceedings of the 2010 IEEE Vehicle Power and Propulsion Conference, Lille, France, 2010: 1-6. [16] 王轶楠, 唐冲, 颜钢锋. 定子齿冠开辅助凹槽抑制永磁电机齿槽转矩[J]. 微电机, 2014, 47(10): 20-23. Wang Yinan, Tang Chong, Yan Gangfeng.Reducing cogging torque of permanent magnet motors by notching auxiliary slot in top of stator teeth[J]. Micromotors, 2014, 47(10): 20-23. [17] 沈建新, 蔡顺, 郝鹤, 等. 同步磁阻电机分析与设计(连载之五)定子铁心的优化设计[J]. 微电机, 2016, 49(12): 80-83. Shen Jianxin, Cai Shun, Hao He, et al.Analysis and design of synchronous reluctance machines part V: stator core optimization[J]. Micromotors, 2016, 49(12): 80-83. [18] Sanada M, Hiramoto K, Morimoto S, et al.Torque ripple improvement for synchronous reluctance motor using an asymmetric flux barrier arrangement[J]. IEEE Transactions on Industry Applications, 2004, 40(4): 1076-1082. [19] Chen Qian, Yan Yujie, Xu Gaohong, et al.Principle of torque ripple reduction in synchronous reluctance motors with shifted asymmetrical poles[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(3): 2611-2622. [20] Bianchi N, Degano M, Fornasiero E.Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM machines[J]. IEEE Transactions on Industry Applications, 2015, 51(1): 187-195. [21] 刘国海, 王艳阳, 陈前. 非对称V型内置式永磁同步电机的多目标优化设计[J]. 电工技术学报, 2018, 33(增刊2): 385-393. Liu Guohai, Wang Yanyang, Chen Qian.Multi-objective optimization of an asymmetric v-shaped interior permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 385-393. [22] Lei Gang, Liu Chengcheng, Li Yanbin, et al.Robust design optimization of a high-temperature superconducting linear synchronous motor based on Taguchi method[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 1-6. |
|
|
|