|
|
Design of a Rotary Loosely-Coupled Transformer Structure Based on Analysis of High-Frequency Material Characteristics |
Feng Chao, Zhang Yanli, Ren Ziyan, Zhang Dianhai, Qi Yanli |
Ministry of Education Key Laboratory of Special Motors and High-Voltage Electrical Apparatus Shenyang University of Technology Shenyang 110870 China |
|
|
Abstract In order to improve the coupling performance of rotary transformer and reduce the size of the core, this paper proposes a new type of rotary loosely-coupled transformer using nanocrystalline strip as the core material, which is used to supply power for rotating equipment. Based on the measurement system of high-frequency magnetic property in the laboratory, the magnetic properties of soft magnetic ferrite and nanocrystalline strip under the excitations of sine and square waves were measured and analyzed. Nanocrystalline strip was employed to replace the bulk soft magnetic ferrite as a rotary loosely-coupled transformer core material. Due to the change of core material shape, the traditional pot core structure of rotary loosely-coupled transformer is no longer suitable for nanocrystalline core, and then in this paper, two new structures of rotary loosely-coupled transformer were proposed. Based on magnetic field numerical simulation platform, this paper analyzed the transient characteristics of these two rotary loosely coupled-transformer under actual conditions, calculated the coupling factor and core loss, and discussed the feasibility of the above-mentioned rotary loosely-coupled transformer core structure and the corresponding winding structure, which provides a new idea for the performance improvement of the rotary loosely-coupled transformer.
|
Received: 11 July 2020
|
|
|
|
|
[1] 范兴明, 高琳琳, 莫小勇, 等. 无线电能传输技术的研究现状与应用综述(英文)[J]. 电工技术学报, 2019, 34(7): 1353-1380. Fan Xingming, Gao Linlin, Mo Xiaoyong, et al.Overview of research status and application of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1353-1380. [2] 卢伟国, 陈伟铭, 李慧荣. 多负载多线圈无线电能传输系统各路输出的恒压特性设计[J]. 电工技术学报, 2019, 34(6): 1137-1147. Lu Weiguo, Chen Weiming, Li Huirong.Multi-load constant voltage design for multi-load and multi-coil wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1137-1147. [3] 陈希有, 周宇翔, 李冠林, 等. 磁场耦合无线电能传输系统最大功率要素分析[J]. 电机与控制学报, 2017, 21(3): 1-9. Chen Xiyou, Zhou Yuxiang, Li Guanlin, et al.Approach for maximum power transfer of magnetically coupled wireless power transmission system[J]. Electric Machines and Control, 2017, 21(3): 1-9. [4] 张献, 王杰, 杨庆新, 等. 电动汽车动态无线供电系统电能耦合机构与切换控制研究[J]. 电工技术学报, 2019, 34(15): 3093-3101. Zhang Xian, Wang Jie, Yang Qingxin, et al.The power coupling mechanism and switching control for dynamic wireless power supply system of electric vehicle[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3093-3101. [5] 闫美存, 王旭东, 刘金凤, 等. 非接触式励磁电源的谐振补偿分析[J]. 电机与控制学报, 2015, 19(3): 45-53. Yan Meicun, Wang Xudong, Liu Jinfeng, et al.Analysis of contactless excitation power supply resonance compensation[J]. Electric Machines and Control, 2015, 19(3): 45-53. [6] Miskiewicz R M, Moradewicz A J.Contactless power interface for plug-in electric vehicles in V2G systems[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2011, 59(4): 561-568. [7] Zhang Yixuan, Chen Guipeng, Hu Yihua, et al.Cascaded multilevel inverter based power and signal multiplex transmission for electric vehicles[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(2): 123-129. [8] 杨东升, 元席希, 洪欢, 等. 一种基于非同轴线圈的距离适应无线电能传输方法[J]. 电机与控制学报, 2019, 23(9): 84-91. Yang Dongsheng, Won Sokhui, Hong Huan, et al.Methodology of range-adaptive for wireless power transmission based on non-coaxial coils[J]. Electric Machines and Control, 2019, 23(9): 84-91. [9] 诸嘉慧, 刘之方, 高强, 等. 基于能量流理论的谐振式无线电能传输原理分析与验证[J]. 电工技术学报, 2019, 34(20): 4188-4195. Zhu Jiahui, Liu Zhifang, Gao Qiang, et al.Analysis and verification of energy flow model of magnetic resonant coupled wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4188-4195. [10] 贾金亮, 闫晓强. 磁耦合谐振式无线电能传输特性研究动态[J]. 电工技术学报, 2020, 35(20): 4217-4231. Jia Jinliang, Yan Xiaoqiang.Research tends of magnetic coupling resonant wireless power transfer characteristics[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4217-4231. [11] Hagiwara N.Study on the principle of contactless electric power transfer via electromagnetic coupling[J]. IEEE Transactions on Industry Applications, 2011, 131(5): 708-713. [12] Hasanzadeh S, Vaez Z S.Efficiency analysis of contactless electrical power transmission systems[J]. Energy Conversion and Management, 2013, 65(11): 487-496. [13] 吴旭升, 孙盼, 杨深钦, 等. 水下无线电能传输技术及应用研究综述[J]. 电工技术学报, 2019, 34(8): 1559-1568. Wu Xusheng, Sun Pan, Yang Shenqin, et al.Review on underwater wireless power transfer technology and its application[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1559-1568. [14] Cheng Zhiyuan, Lei Yang, Song Kai, et al.Design and loss analysis of loosely coupled transformer for an underwater high-power inductive power transfer system[J]. IEEE Transactions on Magnetics, 2015, 51(7): 1-10. [15] 闫美存, 王旭东. CSME系统的EIV-RLS辨识建模法及其精度分析[J]. 电工技术学报, 2017, 32(11): 126-135. Yan Meicun, Wang Xudong.CSME system EIV-RLS identification modeling method and its accuracy analysis[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 126-135. [16] Matsumoto H, Neba Y, Iura H, et al.Trifoliate three-phase contactless power transformer in case of winding-alignment[J]. IEEE Transactions on Industrial Electronics, 2014, 61(1): 53-62. [17] Abdolkhani A, Hu A P, Covic G A, et al.Through-hole contactless slipring system based on rotating magnetic field for rotary applications[J]. IEEE Transactions on Industry Applications, 2014, 50(6): 3644-3655. [18] Abdolkhani A, Hu A P, Nair N K C. A double stator through-hole type contactless slipring for rotary wireless power transfer applications[J]. IEEE Transactions on Energy Conversion, 2014, 29(2): 426-434. [19] 王旭东, 闫美存, 刘金凤, 等. 相对旋转时非接触式励磁系统磁罐变压器研究[J]. 中国电机工程学报, 2015, 35(22): 5915-5923. Wang Xudong, Yan Meicun, Liu Jinfeng, et al.Transient analysis of contactless excitation systems with relative rotating pot core transformers[J]. Proceedings of the CSEE, 2015, 35(22): 5915-5923. [20] 杨玉岗, 吴瑶, 黄伟义. 旋转式松耦合变压器的绕组优化设计[J]. 电工技术学报, 2019, 34(13): 2782-2792. Yang Yugang, Wu Yao, Huang Weiyi.The optimized design of winding for rotary loosely coupled transformer[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2782-2792. [21] 李永建, 杨庆新, 安金龙, 等. 软磁复合材料的三维磁特性检测实验研究[J]. 电工技术学报, 2012, 27(9): 160-165. Li Yongjian, Yang Qingxin, An Jinlong, et al.Three dimensional magnetic properties measurement of soft magnetic composite materials[J]. Transactions of China Electrotechnical Society, 2012, 27(9): 160-165. [22] Nguyen Y M, Bourrier D, Charlot S, et al.Soft ferrite cores characterization for integrated micro-inductors[J]. Journal of Micromechanics & Microengineering, 2014, 476(1): 914-919. [23] 杜永, 程志光, 谢德馨, 等. 各向异性取向硅钢片的多方向磁性能模拟[J]. 高电压技术, 2009, 35(12): 3022-3026. Du Yong, Cheng Zhiguang, Xie Dexin, et al.Modeling for multi-directional magnetic property of anisotropic grain-oriented silicon steel[J]. High Voltage Engineering, 2009, 35(12): 3022-3026. [24] 李永建, 王利祥, 张长庚, 等. 基于三维励磁结构的电工磁材料动态磁特性测试与分析[J]. 电工技术学报, 2018, 33(1): 166-174. Li Yongjian, Wang Lixiang, Zhang Changgeng, et al.Dynamic magnetic properties testing and analysis of the electric magnetic materials based on three-dimensional excitation structure[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 166-174. [25] 杨庆新, 李永建. 先进电工磁性材料特性与应用发展研究综述[J]. 电工技术学报, 2016, 31(20): 1-12. Yang Qingxin, Li Yongjian.Characteristics and developments of advanced magnetic materials in electrical engineering:a review[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 1-12. [26] 赵国新, 孔德财, 高晓林. 软磁复合材料与硅钢片材料的永磁电机性能差异研究[J]. 电工技术学报, 2018, 33(增刊1): 75-81. Zhao Guoxin, Kong Decai, Gao Xiaolin.Performance difference study on permanent magnet synchronous motor based on soft magnetic composite material and silicon steel sheet[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 75-81. [27] Ayman E R.Role of advanced materials in electrical machines[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(2): 124-132. |
|
|
|