|
|
Multi-Scale and Multi-Physical Domain Modeling and Simulation Method for Urban Rail Traction Power Supply System |
Zhang Gang1, Wang Yunda1, Liu Zhigang2, Yu Hong1, Qiu Ruichang1 |
1. School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China; 2. Rail Transit Electrical Engineering Technology Research Center Beijing 100044 China |
|
|
Abstract The actual operation of the urban rail transit traction power supply system involves the coupling effect of electrical, magnetic, thermal, mechanical and other physical domains, as well as the change process of multiple time and space scales. However, the traditional modeling and simulation method has scale separation and single mechanism, which is difficult to describe and analyze the state of multi-scale and multi-physical domain of the system. Therefore, a multi-scale and multi-physical domain modeling and simulation method for the urban rail traction power supply system was proposed. The system level modeling framework of multi-scale and multi-physical domain was designed by the Simscape platform and the idea of modularization, componentization and visualization modeling. Based on the parallel cooperative interaction strategy, a multi-scale simulation method with adaptive observation mode was proposed to realize the organic and efficient combination of multi-scale models. Based on hierarchical multi-domain feedback, a system level multi-physical domain simulation method was proposed to ensure the coupling interaction simulation of the multi-physical domain model. Finally, the effectiveness of the proposed modeling and simulation method was verified by simulation. It is shown that the multi-scale and multi-physical domain models can describe the macro and micro characteristics of the system in multiple physical domains, and characterize the actual physical process of the system operation.
|
Received: 17 June 2021
|
|
|
|
|
[1] 刘炜, 吴拓剑, 禹皓元, 等. 直流牵引供电系统地面储能装置建模与仿真分析[J]. 电工技术学报, 2020, 35(19): 4207-4215. Liu Wei, Liu Tuojian, Yu Haoyuan, et al.Modeling and simulation of way-side energy storage devices in DC traction power supply system[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4207-4215. [2] 刘炜, 谢文君, 孙名刚, 等. 基于分层优化的分散式城轨供电系统网络化支援供电[J]. 电工技术学报, 2021, 36(11): 2306-2314. Liu Wei, Xie Wenjun, Sun Minggang, et al.Research on networked support power supply of urban rail power supply system based on hierarchical opti-mization[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2306-2314. [3] 王运达, 张钢, 于泓, 等. 基于数字孪生的城轨供电系统高保真建模方法[J]. 高电压技术, 2021, 47(5): 1576-1583. Wang Yunda, Zhang Gang, Yu Hong, et al.High fidelity modeling method of urban rail power supply system based on digital twin[J]. High Voltage Engineering, 2021, 47(5): 1576-1583. [4] 顾靖达, 杨晓峰, 郑琼林, 等. 基于不同接地方式与列车工况的负阻变换器牵引供电系统轨道电位与杂散电流[J]. 电工技术学报, 2021, 36(8): 1703-1717. Gu Jingda, Yang Xiaofeng, Zheng Qionglin, et al.Rail potential and stray current on negative resistance concerter traction power system under diffierent grounding schemes and train conditions[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(8): 1703-1717. [5] 李昱, 郭宏, 平朝春, 等. 基于电流源变流器的永磁同步电机驱动系统全状态变量预测转矩控制[J]. 电工技术学报, 2021, 36(1): 15-26. Li Yu, Guo Hong, Ping Zhaochun, et al.A full-state variable predictive torque control of current source converter fed permanent magnet synchronous motor drives[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 15-26. [6] Liang Tian, Dinavahi V.Real-time device-level simulation of MMC-based MVDC traction power system on MPSoC[J]. IEEE Transactions on Trans-portation Electrification, 2018, 4(2): 626-641. [7] 蔡洋, 郭文勇, 赵闯, 等. 模块化多电平换流器直流故障过电流精确计算与分析[J]. 电工技术学报, 2021, 36(7): 1526-1536. Cai Yang, Guo Wenyong, Zhao Chuang, et al.The accurate calculation and analysis of overcurrent under modular multilevel converter DC fault[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(7): 1526-1536. [8] Jiang Xiaofeng, Hu Haitao, Yang Xiaowei, et al.Analysis and adaptive mitigation scheme of low-frequency oscillations in AC railway traction power systems[J]. IEEE Transactions on Transportation Electrification, 2019, 5(3): 715-726. [9] Zhang Xinyu, Chen Jie, Qiu Ruichang, et al.VCT-AOC comprehensive method to suppress high-frequency resonance and low-frequency oscillation in railway traction power supply system[J]. IEEE Access, 2019, 7(1): 152202-152213. [10] Hao Fengjie, Zhang Gang, Chen Jie, et al.Optimal voltage regulation and power sharing in traction power systems with reversible converters[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2726-2735. [11] Wang Yunda, Zhang Gang, Qiu Ruichang, et al.Distribution correction model of urban rail return system considering rail skin effect[J]. IEEE Transa-ctions on Transportation Electrification, 2021, 7(2): 883-891. [12] Jabr R, Džafić I.Solution of DC railway traction power flow systems including limited network receptivity[J]. IEEE Transactions on Power Systems, 2018, 33(1): 962-969. [13] Qin Qiangqiang, Guo Tingting, Lin Fei.Energy transfer strategy for urban rail transit battery energy storage system to reduce peak power of traction sub-station[J]. IEEE Transactions on Vehicular Tech-nology, 2019, 68(12): 11714-11724. [14] 董博, 李鹏, 富晓鹏, 等. 基于改进增广节点方程的柔性互联配电网统一潮流计算方法[J]. 电力系统自动化, 2021, 45(8): 22-31. Dong Bo, Li Peng, Fu Xiaopeng, et al.Unified power flow calculation method of flexible interconnected distribution network based on modified augmented nodal equation[J]. Automation of Electric Power Systems, 2021, 45(8): 22-31. [15] Wu Biyi, Hao Yang, Sheng Xinqing.A finite element model order reduction technique for multiscale electromagnetic problems[J]. IEEE Journal on Multi-scale and Multiphysics Computational Techniques, 2018, 3(1): 140-148. [16] Liu Yunhua, Zhang Bo, Xie Fan, et al.Multiscale modeling and analysis of DC/DC converter based on macro and micro-scale description[J]. IEEE Transa-ctions on Energy Conversion, 2020, 35(1): 356-365. [17] Lecuna R, Delgado F, Ortiz A, et al.Thermal-fluid characterization of alternative liquids of power trans-formers: a numerical approach[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(5): 2522-2529. [18] Deng Yongqing, Ruan Jiangjun, Quan Yu, et al.A method for hot spot temperature prediction of a 10kV oil-Immersed transformer[J]. IEEE Access, 2019, 7(1): 107380-107388. [19] 骆小满, 阮江军, 邓永清, 等. 基于多物理场计算和模糊神经网络算法的变压器热点温度反演[J]. 高电压技术, 2020, 46(3): 860-866. Luo Xiaoman, Ruan Jiangjun, Deng Yongqing, et al.Transformer hot-spot temperature inversion based on multi-physics calculation and fuzzy neural network algorithm[J]. High Voltage Engineering, 2020, 46(3): 860-866. [20] Jia Yingjie, Xiao Fei, Duan Yaoqian, et al.PSpice-COMSOL-based 3-D electrothermal-mechanical modeling of IGBT power module[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(4): 4173-4185. [21] Ji Bing, Song Xueguan, Sciberras E, et al.Multi-objective design optimization of IGBT power modules considering power cycling and thermal cycling[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2493-2504. [22] Zhao Zihao, Liang Lin, Han Lubin.Study of pressure balance for press-pack IGBTs and its influence on temperature distribution[J]. Chinese Journal of Elec-trical Engineering, 2018, 4(4): 57-63. [23] Saxena P, Gorji N.COMSOL simulation of heat distribution in perovskite solar cells: coupled optical-electrical-thermal 3-D analysis[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1693-1698. [24] 王源, 李兴宝, 杨明月, 等. 基于热电类比理论的光纤复合低压电缆温度分布特性研究[J]. 电气技术, 2021, 22(3): 44-51. Wang Yuan, Li Xingbao, Yang Mingyue, et al.Research on temperature distribution characteristic of optical fiber composite low voltage cable based on thermoelectric analogy theory[J]. Electrical Enginee-ring, 2021, 22(3): 44-51. [25] 刘志刚, 郝峰杰, 陈杰, 等. 城轨牵引供电系统车-地配合参数优化方法[J]. 北京交通大学学报, 2019, 43(1): 79-87. Liu Zhigang, Hao Fengjie, Chen Jie, et al.Opti-mization method of train-ground coordination parameters for urban traction power supply system[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 79-87. [26] Lian Konglung, Noda T.A time-domain harmonic power-flow algorithm for obtaining nonsinusoidal steady-state solutions[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1888-1898. [27] 全恒立, 张钢, 阮白水, 等. 城市轨道交通混合型能馈式牵引供电装置[J]. 北京交通大学学报, 2013, 37(2): 92-98. Quan Hengli, Zhang Gang, Ruan Baishui, et al.Urban rail transit hybrid traction power system with energy feedback[J]. Journal of Beijing Jiaotong University, 2013, 37(2): 92-98. [28] 潘武略, 徐政, 张静, 等. 电压源换流器型直流输电换流器损耗分析[J]. 中国电机工程学报, 2008, 28(21): 7-14. Pan Wulüe, Xu Zheng, Zhang Jing, et al.Dissipation analysis of VSC-HVDC converter[J]. Proceedings of the CSEE, 2008, 28(21): 7-14. [29] 李辉, 龙海洋, 姚然, 等. 不同封装形式压接型IGBT器件的电-热应力研究[J]. 电力自动化设备, 2020, 40(8): 76-84. Li Hui, Long Haiyang, Yao Ran, et al.Study on electro-thermal stress of press pack IGBT devices with different package forms[J]. Electric Power Automation Equipment, 2020, 40(8): 76-84. [30] 张思慧, 赵蕤, 闫帅, 等. 基于热阻抗模型的三相逆变器功率器件结温监测方法[J]. 电源学报, 2021, 19(4): 27-34. Zhang Sihui, Zhao Rui, Yan Shuai, et al.Junction temperature monitoring method for three-phase inverter power device based on thermal impedance model[J]. Journal of Power Supply, 2021, 19(4): 27-34. |
|
|
|